Бумажник своими руками из кожи. Как сделать мужской кожаный бумажник: шьем брутальный кошелек из кожи своими руками. Как сделать кошелек из фетра: выкройки, фото

Для начала рассмотрим вопрос, как же в своё время исследователи пришли к пониманию величины, получившей название «сопротивление тока ». При рассмотрении основ электростатики уже затрагивались вопросы электропроводимости, в том числе то, что разные вещества обладают разной проводимостью (способностью пропускать свободные заряженные частицы). Например, металлы характеризуются хорошей проводимостью (из-за чего их и называют проводниками), а пластмасса и дерево - плохой (диэлектрики или непроводники). Такие различия связаны с особенностями молекулярного строения разных веществ.

Наиболее результативными работами по исследованию проводимости разных веществ стали опыты, которые проводил Георг Ом (1789-1854) (рис. 1).

Суть работы Ома была следующая. Ученый использовал электрическую схему, состоящую из источника тока , проводника, а так же специального прибора для отслеживания силы тока . Изменяя в схеме проводники, Ом отследил следующую закономерность: сила тока в цепи увеличивалась при увеличении напряжения. Следующим открытием Ома стало то, что при замене проводников так же изменялась степень увеличения силы тока при увеличении напряжения. Пример такой зависимости изображен на рисунке 2.

Ось Х демонстрирует напряжение, а ось Y - силу тока . На графике представлены две прямые, демонстрирующие различную скорость увеличения силы тока с увеличением напряжения в зависимости от проводника, входящего в состав цепи.

Результатом исследований Ома стал следующий вывод: «Разные проводники обладают разными свойствами проводимости», в результате чего появилось понятие сопротивления тока .

Электрическое сопротивление тока.

Электрическое сопротивление - физическая величина, которая характеризует способность проводника влиять на электрический ток , протекающий в проводнике.

  • Обозначение величины: R
  • Единица измерения: Ом

Результатом проведения экспериментов с проводниками было определено, что взаимосвязь между силой тока и напряжением в электрической цепи зависит так же от размеров используемого проводника, а не только от вещества. Детальнее влияние размеров проводника будет рассмотрено на отдельном уроке.

За счет чего же появляется сопротивление тока ? Во время движения свободных электронов происходит постоянное взаимодействие между ионами, входящими в строение кристаллической решетки, и электронами. В результате данного взаимодействия и происходит замедление движения электронов (фактически, из-за столкновения электронов с атомами - узлами кристаллической решетки), благодаря чему и создается сопротивление тока.

С электрическим сопротивлением также связана другая физическая величина - проводимость тока , обратная величина относительно сопротивления.

Формулы сопротивления тока.

Рассмотрим зависимость между изученными на последних уроках величинами. Как было сказано, с увеличением напряжения увеличивается в цепи и сила тока , эти величины пропорциональны: I~U

Увеличение сопротивления проводника приводит к уменьшению силы тока в цепи, таким образом, данные величины обратно пропорциональны между собой: I~1/R

В результате исследований была выявлена следующая закономерность: R=U/I

Расписываем получение единицы сопротивления тока : 1Ом=1В/1А

Таким образом 1 Ом являет собой такое сопротивление тока, при котором сила тока в проводнике равняется 1 А, а напряжение на концах проводника 1 В.

Фактически, сопротивление тока в 1 Ом слишком маленькое и на практике используются проводники, которые характеризуются более высоким сопротивлением (1 КОм, 1 МОм и т.д.).

Сила тока и напряжение являются взаимосвязанными величинами, которые оказывают влияние друг на друга. Детальнее это будет рассмотрено уже на следующем уроке.

Введение ………………………………………………………………………………2

Измерение сопротивления при постоянном токе …………………..…….3

Метод амперметра-вольтметра…………………………………………….……3

Метод непосредственной оценки………………………………………………..4

Мосты для измерения сопротивления на постоянном токе………………...6

Измерение очень больших сопротивлений……………………………………9

Измерение сопротивления при переменном токе ………………….…...10

Измеритель иммитанса…………………………………………..……………...10

Измерительная линия…………………………………………………..……….11

Измерение ультрамалых сопротивлений…………………………..…………13

Выводы ………………………………………………………………….………..…14

Введение

Электрическое сопротивление - основная электрическая характеристика проводника, величина, характеризующая противодействие электрической цепи или ее участка электрическому току. Также сопротивлением могут называть деталь (её чаще называют резистором) оказывающую электрическое сопротивление току. Электрическое сопротивление обусловлено преобразованием электрической энергии в другие виды энергии и измеряется в Омах.

Сопротивление (часто обозначается буквой R) считается, в определённых пределах, постоянной величиной для данного проводника и её можно определить как

R - сопротивление;

U - разность электрических потенциалов на концах проводника, измеряется в вольтах;

I - ток, протекающий между концами проводника под действием разности потенциалов, измеряется в амперах.

Для практического измерения сопротивлений применяют множество различных методов, в зависимости от условий измерения и характера объектов, от требуемой точности и быстроты измерений. Например различают методы для измерения сопротивления при постоянном токе и при переменном, измерение больших сопротивлений, сопротивлений малых и ультрамалых, прямые и косвенные и т.д.

Целью работы является выявление основных, наиболее часто встречающихся в практике, методов измерения сопротивлений.

Измерение сопротивления при постоянном токе

Основными методами измерения сопротивления постоянному току являются косвенный метод, метод непосредственной оценки, а также мостовой метод. Выбор метода измерений зависит от ожидаемого значения измеряемого сопротивления и требуемой точности измерений. Из косвенных методов наиболее универсальным является метод амперметра-вольтметра.

Метод амперметра-вольтметра

Данный метод основан на измерении тока, протекающего через измеряемое сопротивление и падения напряжения на нем. Применяют две схемы измерения: измерение больших сопротивлений (а) и измерение малых сопротивлений (б). По результатам измерения тока и напряжения определяют искомое сопротивление.

Для схемы (а) искомое сопротивление и относительную методическую погрешность можно определить по формулам:

где Rx - измеряемое сопротивление, а Rа - сопротивление амперметра.

Для схемы (б) искомое сопротивление и относительная методическая погрешность измерения определяются по формулам:

Из формулы видно, что при подсчете искомого сопротивления по приближенной формуле возникает погрешность, оттого, что при измерении токов и напряжений во второй схеме амперметр учитывает и тот ток, который проходит через вольтметр, а в первой схеме вольтметр измеряет напряжение помимо резистора еще и на амперметре.

Из определения относительных методических погрешностей следует, что измерение по схеме (а) обеспечивает меньшую погрешность при измерении больших сопротивлений, а измерение по схеме (б) - при измерении малых сопротивлений. Погрешность измерения по данному методу рассчитывается по выражению:

«Используемые при измерении приборы должны иметь класс точности не более 0,2. Вольтметр подключают непосредственно к измеряемому сопротивлению. Ток при измерении должен быть таким, чтобы показания отсчитывались по второй половине шкалы. В соответствии с этим выбирается и шунт, применяемый для возможности измерения тока прибором класса 0,2. Во избежание нагрева сопротивления и, соответственно, снижения точности измерений, ток в схеме измерения не должен превышать 20% номинального».

Достоинство схем метода измерение амперметром и вольтметром заключается в том, что по резистору с измеряемым сопротивлением можно пропускать тот же ток, как и в условии его работы, что является важным при измерении сопротивлений, значения которых зависят от тока.

Метод непосредственной оценки.

Метод непосредственной оценки предполагает измерение сопротивления постоянному току с помощью омметра. Омметром называют измерительный прибор непосредственного отсчёта для определения электрических активных (активные сопротивлений также называют омическими сопротивлениями) сопротивлений. Обычно измерение производится по постоянному току, однако, в некоторых электронных омметрах возможно использование переменного тока. Разновидности омметров: мегаомметры, тераомметры, гигаомметры, миллиомметры, микроомметры, различающиеся диапазонами измеряемых сопротивлений.

По принципу действия омметры можно разделить на магнитоэлектрические - с магнитоэлектрическим измерителем или магнитоэлектрическим логометром (мегаомметры) и электронные, которые бывают аналоговые или цифровые.

«Действие магнитоэлектрического омметра основано на измерении силы тока, протекающего через измеряемое сопротивление при постоянном напряжении источника питания. Для измерения сопротивлений от сотен Ом до нескольких мегаом измеритель и измеряемое сопротивление rx включают последовательно. В этом случае сила тока I в измерителе и отклонение подвижной части прибора a пропорциональны: I = U/(r0 + rx), где U - напряжение источника питания; r0 - сопротивление измерителя. При малых значениях rx (до нескольких ом) измеритель и rx включают параллельно».

За основу логометрических мегаомметров берется логометр, к плечам которого подключаются в разных комбинациях (в зависимости от предела измерения) образцовые внутренние резисторы и измеряемое сопротивление, показание логометра зависит от соотношения этих сопротивлений. В качестве источника высокого напряжения, необходимого для проведения таких измерений, в подобных приборах обычно используют механический индуктор - электрогенератор с ручным приводом, в некоторых мегаомметрах вместо индуктора применяется полупроводниковый преобразователь напряжения.

Принцип действия электронных омметров основан на преобразовании измеряемого сопротивления в пропорциональное ему напряжение с помощью операционного усилителя. Измеряемый резистор включается в цепь обратной связи (линейная шкала) или на вход усилителя. Цифровой омметр представляет собой измерительный мост с автоматическим уравновешиванием. Уравновешивание производится цифровым управляющим устройством методом подбора прецизионных резисторов в плечах моста, после чего измерительная информация с управляющего устройства подаётся на блок индикации.

«При измерении малых сопротивлений может возникать дополнительная погрешность из-за влияния переходного сопротивления в точках подключения. Чтобы избежать этого применяют так называемый метод четырехпроводного подключения. Сущность метода состоит в том, что используются две пары проводов - по одной паре на измеряемый объект подается ток определенной силы, с помощью другой пары с объекта на прибор подаётся падение напряжения пропорциональное силе тока и сопротивлению объекта. Провода подсоединяются к выводам измеряемого двухполюсника таким образом, чтобы каждый из токовых проводов не касался непосредственно соответствующего ему провода напряжения, при этом получается, что переходные сопротивления в местах контактов не включаются в измерительную цепь».

Сущность понятия «сопротивление»

Определение 1

Сопротивление - физическая величина, характеризующая среду (проводник), через которую протекает электрический ток.

С физической точки зрения сопротивление обусловлено тем, что заряженные частицы, перемещаясь от одного конца проводника к другому, сталкиваются с атомами его кристаллической решетки или другими элементарными частицами среды. Поэтому протекание тока в обычных условиях связано с выделением некоторого количества тепла за счет таких соударений, т.е. с потерями энергии.

Замечание 1

При охлаждении проводников до сверхнизких температур в них возникает явление сверхпроводимости, когда сопротивление становится равным нулю.

Сопротивление зависит от следующих факторов:

  • материал (например, сопротивление у вольфрама выше, чем у меди);
  • геометрическая форма (чем длиннее проводник и тоньше его сечение - тем больше сопротивление);
  • температура (чем она выше, тем больше сопротивление) и т.д.

Из закона Ома сопротивление можно выразить как

$R = \frac{U}{I}$,

где $U$ - напряжение, $I$ - сила тока.

Единица измерения сопротивления

В системе СИ сопротивление измеряется в Омах.

Замечание 2

Единица измерения Ом названа в честь немецкого физика Георга Ома (1787 - 1854 гг.), внесшего большой вклад в развитие электротехники.

В систему СИ Ом был введен в 1960 году. В Российской Федерации действует ГОСТ 8.417-2002, в котором в качестве единицы измерения электрического сопротивления также указан Ом.

Ом - производная единица, равная сопротивлению проводника, по которому протекает ток силой 1 ампер вызывая падение напряжения на концах этого проводника 1 вольт. Вольт для СИ - внесистемная единица, поэтому Ом выражается через килограммы, секунды и амперы:

$Ом = \frac{м^2 \cdot кг}{с^3 \cdot А^2}$.

В системе «Сантиметр, грамм, секунда» (СГС) единица сопротивления не имеет собственного названия, равно как единицы силы тока и напряжения. Для пересчета сопротивления между системами СГС и СИ используется соотношение:

$1 ед. СГС = 9 \cdot 10^11 Ом$.

В системе СГСЭ и системе Гаусса сопротивление измеряется в статах. Стат представляет собой частное от деления напряжения, выраженного в статвольтах, на силу тока, выраженную в статамперах.

$1 stat \approx 8,99 \cdot 10^11 Ом$.

В системе СГСМ сопротивление измеряется в абомах (напряжение - в абвольтах, сила тока - в абамперах):

$1 abom = 1нОм = 10^{-9} Ом$.

Для измерения электрического сопротивления используют омметры - приборы, оснащенные собственными источниками тока. Современные приборы такого типа показывают результат измерения на электронных табло. Старые омметры показывали результат посредством механических стрелок, что менее практично, зато наглядно демонстрирует природу измеряемой величины.

Стрелка классического омметра прикреплена к вращающейся в постоянном магнитном поле токопроводящей подпружиненной рамке, при пропускании тока через которую возникает электромагнитная сила, взаимодействующая с магнитным полем. Чем больший течет ток через проводник, тем, сильнее отклоняется стрелка и, следовательно, меньше сопротивление. Поэтому показания на шкалах таких приборов часто отсчитывается не слева направо, а справа налево.

Рисунок 1. Шкала омметра (верхняя) с отсчетом величины справа налево. Автор24 - интернет-биржа студенческих работ

На практике часто используют кратные Ому единицы измерения - килоомы, мегаомы.

Для маркировки резисторов - электронных компонентов с заданным сопротивлением - применяется система цветных полосок, позволяющая не наносить на детали плохо читаемый мелкий текст.

Сразу оговоримся, что речь пойдет об измерении сопротивления электрическому току. Что оно собой представляет, и в чем измеряется сопротивление?

Три кита

Откуда вообще берется такое сопротивление? Все материалы в природе, с точки зрения электропроводности, делятся на 3 категории – изоляторы, полупроводники, и проводники. Первые не проводят электрический ток вообще (например, стекло, пластик, воздух), вторые – пропускают ток лишь в определенных условиях (кремний, германий), и на их основе построена вся современная электроника. Но интересуют нас последние – всем знакомые проводники. Обыкновенная медная проволока, провод, которым подключен ваш компьютер в розетку – все это проводники.

Как же проводники могут оказывать сопротивление электрическому току? Дело в том, что идеального проводника в природе не существует. В любом, даже самом "чистом" проводнике всегда есть некоторая часть примесей, которые оказывают сопротивление электронам, движущимся в теле проводника. Столкновение электронов с этими примесями вызывает нагрев, а иногда (если плотность потока слишком велика, т.е. слишком большой ток) и разрушение проводника (на этом основано действие нагревательных элементов и плавких предохранителей).

Немного математики

В чем измеряется сопротивление проводника, или вернее сказать – электрической цепи? Единица измерения этой величины, названа в честь физика Георга Симона Ома. Да, того самого Ома, чей Закон мы все учили в школе. В технической литературе обозначается буквой «омега». Само сопротивление в расчетах записывают как "R" (U – напряжение, I – ток, P – мощность и т.д.). Что же значит сия величина? Рассмотрим пример. Согласно закону, того же самого Ома, если наш проводник имеет сопротивление 1 Ом, приложив к его концам напряжение в 220 вольт, мы получим ток (ток = напряжение делённое на сопротивление) 220 ампер. Умножив ток на напряжение, мы узнаем мощность: 220 вольт *220 ампер = 48400 ватт, или 48 киловатт. Это ОЧЕНЬ большая мощность, которую не выдержит никакая бытовая проводка. По сути, такой ток будет током короткого замыкания. Это показывает, насколько важно точно знать сопротивление цепи, перед подачей напряжения! К счастью, узнать его не так сложно, и, даже не обязательно проводить какие-то расчеты. Есть специальные измерительные приборы – омметры, которые показывают величину сопротивления постоянному току. Их разновидность мегомметры – предназначены для измерения больших величин сопротивлений, и используются в основном для проверки изоляции. Сейчас встретить омметры как отдельные приборы сложно. В большинстве своем они входят в состав комбинированых приборов – авометров, или мультиметров, которые продаются в каждом ларьке китайский товаров.

Итак, удачных вам измерений!

Для безопасной работы на сетях электроснабжения, а также элементарного понимания законов работы электрического поля необходимо обладать хотя бы первичными знаниями основных законов физики и знать определение напряжения тока и сопротивления материалов. В данной статье рассмотрены препятствия для прохождения тока, что такое сопротивление, и основная формула для его вычисления, а также, что такое резистор, и для чего он необходим.

Определение сопротивления

В пособиях по физике приводится следующее определение указанному явлению. Электрическое сопротивление проводника – это физическая величина, которая указывает на свойства материала препятствовать свободному прохождению тока от исходной точки на потребителя. Данный показатель равен отношению напряжения на концах проводника к силе тока, протекающего по кабелю. Существует несколько видов сопротивления на основании свойств материала, к таким типам относятся:

  1. Сопротивление проводников, близкое к нулю. В данном случае способность препятствовать свободному движению тока по кабелю очень низкая, к материалам с подобными характеристиками можно отнести металлическую проводку, выполненную из цветмета;
  2. Минимальное сопротивление проводника. Ток по такому материалу протекает, но встречает определенную преграду, которая понижает напряжение и затрудняет бесперебойную работу электрического поля. Как правило, это не предназначенные для использования в качестве проводника предметы, например, металлические инструменты или стройматериалы, имеющие различную конфигурацию и сечение;
  3. Высокое электросопротивление предмета. Подобные изделия называют полностью диэлектрическими, так как их материал обладает свойствами полной сопротивляемости протеканию тока по своей поверхности. Часто указанными свойствами обладают пластиковые и резиновые детали, изоляция кабеля или деревянные рукоятки инструмента. Ток по данным предметам не проходит, но его напряжение остается неизменным.

Все перечисленные виды сопротивления являются основными и, опираясь на них, производители какой-либо продукции указывают в паспорте изделия уровень защищенности проводника от действия тока. Это необходимо для соблюдения правил безопасности во время использования таких предметов и инструментов в строительстве и быту.

В чем измеряется сопротивление проводника

Электрическое сопротивление обозначается буквой R и измеряется в Омах. Показатель сопротивления, зависящего от типа тока и его напряжения в замкнутой цепи, основывается на законе Ома, который позволяет вычислить реальное значение проходящего по проводнику тока. Таким образом, чтобы вычислить сопротивление, необходимо подставить данные под основную формулу:

  • R – это обозначение сопротивления;
  • U – напряжение в Вольтах;
  • I – сила тока в Амперах.

Чем измеряется сопротивление

Прибор для измерения сопротивления электрического называется Омметр, он подключается к проводнику с включенным питанием и автоматически замеряет показатели сопротивления. Как правило, при измерении сопротивления прибор преобразует переменный ток в постоянный и только после этого выполняет остальные действия. Для профессионального использования часто применяются многофункциональные инструменты, в набор которых входят сразу несколько приборов, замеряющих напряжение, силу тока и сопротивление материала.

Также существует классификация диагностических приборов по критерию мобильности. На основании такого показателя бывают:

  1. Стационарные омметры – часто используются в лабораториях или в укомплектованных электрических шкафах, с многочисленным оборудованием. Такие приборы показывают данные постоянно и могут быть подключены к аварийной сигнализации, которая оповестит обслуживающий персонал об угрозе безопасности;
  2. Мобильные комплексы или инструменты – чаще всего используются при проведении ремонтных или монтажных работ на линии для определения класса проводника и его целостности.

Несмотря на кажущуюся простоту, данный прибор требует внимательности и соблюдения правил безопасности при его использовании. Так как все действия осуществляются на рабочей сети, то необходимо внимательно изучить инструкцию по эксплуатации инструмента и не пытаться подключить его с нарушением схемы.

Резисторы в электрической цепи

Резистор с различным сопротивлением – это прибор электрической сети с пассивным действием, который призван поглощать определенную энергию и удерживать ее неограниченное время. Данное изделие не проводит никакой работы, поэтому считается пассивной деталью, но ее использование необходимо практически на всех схемах питания, а также в закрытых проводниках. Резистор – наиболее распространённый элемент, применяется чаще всех остальных комплектующих в большинстве микросхем.

Резисторы бывают различной маркировки, которая наносится краской на наружный корпус. Чем выше цифра на оболочке, тем большим сопротивлением обладает изделие. Принцип работы детали основан на свойствах материала поглощать заряд и рассеивать его в виде электрического поля, не повышая напряжения внутри сети проводников.

Резистор на основании рабочего материала бывает нескольких видов, но схема его действия принципиально не меняется. Существуют фоторезисторы, приборы переменного и постоянного тока, каждый из типов деталей выполняет свою функцию и обеспечивает нормальную работу закольцованной электрической цепи.

Данный тип изделий, в зависимости от необходимости, может комплектоваться по последовательной или параллельной схеме. При последовательном расположении общее сопротивление будет равно их сумме, а при параллельном – сопротивлением будет сумма показателей всех резисторов, находящихся в цепи.

Что влияет на показатели сопротивления

Существует несколько факторов, которые влияют на уровень сопротивления того или иного проводника. По этому принципу можно выделить три основных показателя:

  1. Длина проводника. Чем больше кабель, тем выше будет его сопротивление, причем это касается и материалов с нулевым показателем, и проводника со средней сопротивляемостью;
  2. Площадь поперечного сечения. В отличие от длины сети, площадь материала влияет в обратную сторону: чем она больше, тем меньше сопротивление проводника;
  3. Характеристики материала кабеля. Существует такое понятие, как проводимость или удельное сопротивление материала, на основании этого параметра тот или иной кабель одинаковой площади и длины может обладать различной сопротивляемостью, в зависимости от примесей в составе металла.

Данные факторы являются основными, но иногда к ним можно отнести и наружную температуру среды, в которой находится проводник, так как при значительном холоде электрическое поле имеет свойство рассеиваться, отчего теряется напряженность, следовательно, и сопротивление будет колебаться.

Таким образом, при понимании основных законов физики и определения напряжения и сопротивления материалов электрическому току даже начинающий мастер сможет выполнять работы по монтажу и обслуживанию сетей, ремонту оборудования и успешно применять полученные знания на практике.

Видео

КАТЕГОРИИ

ПОПУЛЯРНЫЕ СТАТЬИ

© 2024 «flemi.ru» — Ультразвуковое обследование. Брюшная полость, голова, грудная клетка