Как сделать красиво джинсы. Как модно порезать джинсы: инструкции и модные идеи. На каких джинсах лучше делать порезы

Современные системы безопасности развиваются стремительными темпами в связи с повышением общей криминогенной обстановки в мире. Пассивные средства – вневедомственная или личная охрана – уже неактуальны, и в целях защиты себя, своего имущества и бизнеса широко применяются современные системы защиты от злоумышленников, и они постоянно совершенствуются. А комплексное объединение различных систем позволяет более эффективно решить вопрос безопасности и при этом не переплачивать лишние деньги.

Этот вид сигнализации использует передачу радиосигнала, аналогичную тому же стандарту, который применяется при мобильной связи. В комплект входят базовый или контрольный блок, подключённый к любому оператору сотовой связи, и беспроводные датчики. На сим-карту, установленную в блок, и будет поступать тревожный вызов.

Для большей надёжности некоторые производители предусматривают использование двух и трёх сим-карт – на случай, если основная окажется вне зоны доступа. К станции подключаются беспроводные датчики, позволяющие обеспечить полный контроль над помещением. Управление системой осуществляется с помощью смс или кнопками брелоков. При наличии подключённой видеокамеры на электронную почту при срабатывании сигнализации поступает снимок.

Большим плюсом этих устройств является отсутствие проводов и необходимости производить их укладку .

Используются эти сигнализации для охраны дачи, дома, квартиры, гаража, склада, офиса – любой недвижимости.

Важно! Перед тем как выбрать производителя GSM-сигнализации, необходимо определиться, при какой температуре придётся её эксплуатировать и способна ли она работать в режиме, не зависящем от бесперебойной подачи электроэнергии.

Комплексы охраны периметра

Такие системы позволяют выявить и предупредить проникновение злоумышленников на огороженную территорию заблаговременно. Принцип их работы основан на распознавании вибрации или изменения электрического поля.

Комплект защитного устройства включает в себя:

  • датчики различного типа;
  • сенсорный кабель;
  • подсистему оповещения;
  • анализатор движения объекта;
  • компьютер со специальным ПО.

Периметральные устройства могут быть объединены с системами контроля доступа и видеонаблюдения. В случае использования стационарных систем необходимы заграждения для крепления датчиков и кабеля .

Наиболее популярные линии защиты периметра:

  • вибрационные;
  • ёмкостные;
  • радиоволновые;
  • радиолучевые.

Важные требования к устанавливаемой системе:

  • покрытие линии территории и отсутствие мёртвых зон;
  • защита устройства от климатических условий;
  • отсутствие вблизи охраняемой территории железнодорожных путей и деревьев;
  • возможность заземления.

Для защиты от ложных срабатываний используется метеорологический модуль, позволяющий учитывать воздействие атмосферных явлений на оборудование.

Подробнее о системах периметральной сигнализации читайте .

Автономные системы охраны

Это компактная система, имеющая функцию оповещения владельца о незаконном проникновении на территорию. Они подходят для небольших и слабо защищённых объектов, а также на объектах, не имеющих линии связи. просты в управлении, недороги, не имеют абонентской платы в качестве условия работы и не требуют участия оператора для управления системой.

Злоумышленник не сможет отключить автономную сигнализацию самостоятельно, так как она не подключается к бытовой электросети. Питание устройства осуществляется с помощью аккумуляторов различного типа.

Датчики, которые используются при работе автономной охранной системы, бывают:

  • акустические;
  • инфракрасные;
  • вибрационные;
  • герконовые (реагирующие на изменения магнитного поля).

Принцип работы автономной системы охраны: при установке по периметру охраняемого объекта в случае обнаружения движущегося объекта датчики передают информацию на центральный контроллер, издающий звуковой сигнал.

Данные сигнализации делятся на два вида:

  • централизованные – передают информацию с датчиков на центральный пункт охраны;
  • автономные – принимают решения об оповещении самостоятельно, без взаимодействия с контроллерами.

Из минусов данных систем можно выделить уязвимость для электронных сигналов в условиях мегаполиса и помех, создаваемых железобетонными конструкциями.

Лазерные устройства

Принцип её работы предельно прост и основан на фотореле: при пересечении злоумышленником лазерного луча, направленного на специальный фотоэлемент, создаётся преломление, в результате чего реле отключается и срабатывает датчик, затем подаётся сигнал на специальный извещатель. Система может быть дополнительно оснащена сиреной, но чаще при срабатывании приходит сигнал оповещения прямо на пульт дежурного полиции, не слышное злоумышленнику. Это позволяет выиграть время и поймать преступника с поличным.

Используются такие сигнализации для охраны помещений, садовых участков.

Преимущества лазерной охранной системы:

  • мобильность;
  • возможность маскировки.

Из минусов можно назвать высокую стоимость устройства и большой процент ложных срабатываний (птицы, животные). При желании такую систему несложно собрать .

GPS-сигнализация

Этот вид охранной системы базируется на принципах работы систем глобального позиционирования, или спутников. Точность определения местонахождения объекта колеблется от 3 до 20 метров.

Само устройство достаточно компактно, оно часто используется для контроля за живыми объектами: детьми, пожилыми родственниками, домашними животными. А также с его помощью можно защитить от кражи ценности – картину, мебель, книгу.

Широкое распространение получила в разработке охранных систем для защиты авто от вскрытия и угона.

Для охраны помещений в комплекте предусмотрена видеокамера и канал передачи видео на мобильный телефон, также имеется возможность голосовой связи и наличие инфракрасной подсветки для съёмки в темноте.

Данный вид охранной сигнализации не предусматривает прокладку кабеля, а также опережает другие системы по скорости оповещения владельца , что делает её весьма привлекательной. Из минусов можно назвать зависимость от бесперебойной сотовой связи и высокую стоимость.

Инфракрасная сигнализация

Действие этой системы основано на использовании инфракрасных датчиков. При пересечении нарушителем ИК-луча нарушается последовательность импульсов, подаваемых на приёмник, цепь замыкается, и на пульт дежурного поступает сигнал тревоги.

Устройство состоит из:

  • инфракрасных передатчиков и приёмников;
  • блока питания;
  • блоков индикации и сигнализации.

ИК-извещатели подразделяются по принципу действия на:

  • активные;
  • пассивные,

по типу зоны обнаружения – на:

  • объёмные;
  • поверхностные;
  • линейные.

Система инфракрасной защиты в зависимости от модели оснащается датчиком температуры, встроенным микрофоном, выносной или встроенной камерой, громкоговорителем, датчиками удара, перемещения, открытия дверей.

Инфракрасные сигнализации чаще всего используются в системе “Умный дом”.

Правильный выбор охранной сигнализации диктуется как объективными условиями и техническими характеристиками помещения или пространства, нуждающегося в охране, так и стоимостью и многими другими факторами. Консультация специалиста поможет определиться с выбором устройства и станет гарантией спокойствия владельца.

В последнее время лазерные указки получили широкое распространение. Они продаются в магазинах и на радиорынках, а их стоимость невысока. Узконаправленный луч, излучаемый такой указкой, можно использовать в охранной технике.

Этому и посвящена предлагаемая статья.

Внимание! Лазерное излучение опасно для глаз и может вызвать повреждение кожного покрова. При работе с источниками лазерного излучения избегайте попадания луча на людей.

Инфракрасные лазеры с их невидимым излучением широко используются в профессиональных охранных системах. К сожалению, радиолюбители располагают пока лишь одной разновидностью лазерного излучателя - указкой красного свечения.

Она имеет небольшую мощность излучения, не более нескольких милливатт, безопасна для людей и животных, однако не рекомендуется направлять лазерное излучение непосредственно в глаза.

Излучение лазерной указки в импульсном режиме настолько малозаметно, что в скрытности она мало уступает инфракрасным излучателям, а в части юстировки системы имеет перед ними явное преимущество.

Схема импульсного излучателя на базе лазерной указки показана на рис. 1. Частоту следования вспышек лазера задает генератор, собранный на элементах DD1.1 и DD1.2. При указанных на схеме номиналах эта частота примерно равна 5 Гц. За счет дифференцирующей цепи С2RЗ на выходе элемента DD1.4 формируются короткие импульсы длительностью 10 мкс.

Эти импульсы открывают до насыщения транзистор VТ1, и лазер BI1 формирует вспышки такой же длительности.

Для снижения общего энергопотребления излучателя введен резистор R6, понижающий напряжение питания микросхемы DD1 до 3 В. Тумблер SA1 предназначен для включения режима непрерывного излучения при юстировке.

Устройство собрано на печатной плате (рис. 2) из двусторонне фольгированного стеклотекстолита толщиной 1 мм Фольгу под деталями используют лишь в качестве общего провода. Соединения с ней выводов конденсаторов, резисторов и других элементов показаны зачерненными квадратами; квадратом со светлой точкой в центре показано “заземление" вывода 7 микросхемы DD1.

Рис. 1. Принципиальная схема лазерного передатчика - модулятора.

Все резисторы - МЛТ-0,125. Конденсаторы С1 и С2 - КМ-6, С3 и С4 - К53-30.

Лазерную указку нужно укоротить. Отступив от “окна" на 18 мм (конусообразный наконечник вообще удаляют) аккуратно опиливают ее корпус по кругу и отделяют батарейную часть. Со ставшей теперь доступной платы лазера демонтируют кнопку, а излишек платы откусывают (рис. 3).

Все конструктивные элементы излучателя монтируют на пластине 51x30 мм, вырезанной из листового ударопрочного полистирола толщиной 1,5. .2 мм (рис. 4).

Здесь: 1 - лазер в гнезде-обойме; 2 - перегородка для батареи питания; 3 - печатная плата; 4 - наклеенный на перегородку фиксатор печатной платы (две полоски полистирола); 5 - приклеенная к основанию полистироловая опора высотой 10 мм с резьбой под винт М2. Высота деталей на плате должна быть меньше 10 мм.

Рис. 2. Печатная плата передатчика для охранной лазерной сигнализации.

Корпус излучателя изготавливают из того же полистирола в виде открытой коробки. Габариты полностью смонтированного прибора - 56x34x19 мм.

Средний ток, потребляемый импульсным лазерным излучателем, не превышает 10 мкА. При этом импульсный ток в самом лазере - 25...30 мА. Подбором резистора R7 этот ток может быть изменен, в частности увеличен.

При расчете импульсного тока нужно иметь в виду, что последовательно с резистором R7 включен резистор сопротивлением 50...60 Ом, “впечатанный" в саму плату лазера (см рис 3).

Рис. 3. Подключение лазерной указки.

Рис. 4. Корпус охранного устройства на лазерной указке.

Рис. 5. Схема приемника для лазерной сигнализации.

Источником питания излучателя служит 6-вольтная батарея типа 476. Батареи этого типоразмера (013x25,2 мм) имеют емкость от 95 (алкалиновые) до 160 мАч (литиевые) и способны обеспечить непрерывную его работу по меньшей мере в течение года.

Выводы к батарее лучше припаять, поскольку в охранной технике контакт прижимом не обеспечивает достаточной надежности. При столь малом энергопотреблении нет нужды и в выключателе питания (тоже, кстати, весьма ненадежном элементе). Излучатель сохраняет работоспособность при снижении напряжения питания до 4,5 В. Конечно, при этом уменьшается и яркость луча.

Принципиальная схема приемной головки, реагирующей на короткие вспышки лазерного излучателя, показана на рис. 5. Здесь BL1 - фотодиод, обладающий достаточным быстродействием и чувствительностью. Время его включения-выключения должно быть в 5...10 раз меньше длительности вспышки. Ряд подходящих фотодиодов приведен в таблице.

В ответ на каждую вспышку лазера на выходе микросхемы DA1 (вывод 10) возникает единичный импульс, пригодный для непосредственного управления КМОП-микросхемами.

Корпус головки должен быть светонепроницаемым. Его можно склеить из черного ударопрочного полистирола. Во избежание боковой подсветки к “окну” фотодиода рекомендуется приклеить бленду.

Рис. 6. Печатная плата лазерного приемника.

Ее можно изготовить в виде “колодца" квадратного сечения из того же полистирола. Фотодиод можно закрыть красным светофильтром: он мало ослабит излучение лазера. Для защиты от сильных электрических наводок головку нужно заключить в металлический экран.

Головка имеет низкое выходное сопротивление и может быть связана с прочими элементами фотоприемника тонким трехпроводным шнуром длиной 1...2 м. При установке вне помещения она должна быть защищена от непогоды. Потребляемый головкой ток не превышает 1,5 мА (при напряжении питания 6 В).

При юстировке системы лазер переводят в режим непрерывного излучения и наводку луча осуществляют визуально. Чтобы не расходовать энергию батареи GB1, на время настройки можно воспользоваться внешней 6-вольтной батареей.

Нет нужды говорить о том, что лазерный излучатель, работающий в охранной системе, должен быть не только точно наведен, но и “намертво” закреплен в выставленной позиции (если в системе есть зеркала, то это относится и к ним).

Хотя это не значит, что луч лазера вообще не может отклоняться. Опыт показывает, что вспышку лазера можно зарегистрировать и по его излучению, рассеянному под малыми углами. Надежно фиксировались, например, вспышки лазера, удаленного на 50 м, если головка оставалась в круге диаметром 35 см.

Ю. Виноградов, г. Москва. Р2001, 7.

Лазерное излучение нашло широкое применение в профессиональных охранных системах. Но нам с радиолюбительской точки логики наиболее интересны лазерные указки красного свечения. Поскольку указка имеет малую мощность излучения, то она безопасна для людей и животных, однако не следует направлять лазерное излучение непосредственно в глаза это может спровоцировать опасное глазное заболевание.

Принцип работы лазерной сигнализации следующий: когда в зону действия луча попадает объект, лазер перестает освещать фотоприемник. Сопротивление последнего резко увеличивается и реле отключается. Контактами реле отключается и лазер. Это вариант самой простой схемы.

Когда лазерный луч воздействует на фоторезистор, то его сопротивление стремится к нулю, а когда лазер отключен, его сопротивление резко и намного увеличивается. Фоторезистор необходимо разместить в закрытом корпусе.

В роли лазера используется готовый модуль с красным излучателем от дешевой китайской указки. Лазерная головка подсоединена к источнику питания через сопротивление 5 ом. Зона активного луча от 10 до 100 метров.

Предлагаю к рассмотрению схему лазерной сигнализации, основа которой компаратор на операционном усилителе TL072. Опорное напряжение формируется делителем напряжения на сопротивлениях R2 и R3 поступает на третий вывод микросхемы TL072, а сравниваемое напряжение на второй вывод с делителя R1 и VD1.

В момент прерывания лазерного луча, напряжение на втором выводе компаратора резко уменьшается, относительно третьего вывода, в результате чего на выходе ОУ появляется сигнал, который может управлять сиреной или другим исполнительным устройством.

Сопротивление R4 нужно для защиты от самопроизвольного срабатывания, если на обоих входах ОУ равное напряжение. Емкость C1 защищает срабатывание устройства от кратковременного прерывания луча, например, от насекомых.

Корпус лазерной головки должен быть светонепроницаемым. Его можно склеить из черного полистирола. Во избежание боковой подсветки к "окну" фотодиода рекомендуется приклеить бленду. Ее можно изготовить в виде "колодца" квадратного сечения из того же полистирола. Фотоэлемент можно закрыть красным светофильтром он мало ослабит излучение лазера. Для защиты от сильных электрических помех головку помещаем в металлический экран.

Это схема была подробно описана в журнале радио №7 за 2002 год, скачать и ознакомится со статьей вы его можете щелкнув по зеленой стрелочке.

Эта схема работает как охранная система, и является датчиком пересечения злоумышленником лазерного луча. Схема состоит из двух основных частей: фотореле (VT1, VT2) и реле времени (VT3, VT4).


Если лазерный пучек попадает фоторезистор, то реле KV1 отключено, а при прерывание луча, реле сработает, своим контактом KV1.1 включит реле времени и опять вернется в начальное состояние. Реле времени работает по следующему алгоритму. В начальный момент, когда контакт KV1.1 разомкнут напряжение на конденсаторе C1 стремится к нулю, а транзисторы VT3 и VT4 закрыты, ток через обмотку реле KV2 не проходит и его контакты, разомкнуты. При срабатывании реле KV1 конденсатор C1 заряжается и сразу же начнет разряжаться через эмиттерный переход третьего транзистора и сопротивления R8, при этом транзисторы VT3 и VT4 открываются, реле KV2 включится и своими контактами подсоединит исполнительный механизм. По окончанию процесса разряда конденсатора схема возвращается в начальное состояние. Сопротивлением R6 можно регулировать временную задержку.

Эта схема световой сигнализации срабатывает при резком падении уровня освещения датчика, запуская при этом звуковой сигнал тревоги. Устройство не срабатывает при плавном изменении яркости. Чтобы увеличить ресурс батареи питания, звуковой сигнал звуковой сигнал тревоги звучит от одной до десяти секунд, время звучания можно регулировать с помощью построечного сопротивления R5.


В качестве источника света желательно использовать лазерное излучение, но в крайнем случае подойдет и обычное освещение, но схема будет работать гораздо хуже. Чувствительность схемы можно изменять сопротивлением R1. Датчик света является обычный фоторезистор, сопротивление которого минимально при освещении, и максимально при затемнении. Так как микросхема таймер 555 имеет малое энергопотребление, схема сигнализации в дежурном режиме потребляет около 0.5mA.

Этот практически простейший вариант состоит из двух цепей: цепи излучения и приема луча. В схему приемника входит электромагнитное реле для подсоединения внешней сигнализации.


Схема лазерного излучателя состоит из красного Laser светодиода с длиной волны 650 нм и мощностью 5 мВт. LD1 запитан от источника напряжением 5 В. Последовательно с ним подключены два вспомогательных элемента: полупроводниковый диод D1 (1N4007) и сопротивление R1 номиналом 62 Ом. LD1 можно позаимствовать из Laser указки.

Схема приемника состоит из фоторезистора, который управляет реле, с помощью тиристора T1 (BT169). D2 (1N4007) защищает схему от противо-ЭДС импульса катушки реле, когда тиристор T1 отключается.

Пример установки лазерной растяжки-сигнализации показан в левом углу рисунка выше.

В основе схемы применена также идея с лазерной головкой красного цвета из лазерной указки в роли источника света.


Для исключения возможности ложного срабатывания в схеме имеется временная задержка. При необходимости ее увеличения, надо добавить емкости C1 или увеличить значение переменных сопротивлений R2 и R3. Вместо таймера NE555 можно взять его отечественный аналог КР1006ВИ1. Для исключения попадания прямых солнечных лучей в фототранзистор, его желательно расположить в трубке подходящего диаметра в зависимости от корпуса фотоэлемента и длинной не менее 25 см. Торец закрываем прозрачным стеклом для защиты от разной живности. Внутреннюю поверхность трубки можно покрасить в темный цвет.

Самодельное охранное оборудование

Ю. ВИНОГРАДОВ, г. Москва
Радио, 2002 год, № 7

Лазерные указки получили широкое распространение. Они продаются в магазинах и на радиорынках, а их стоимость невысока. Узконаправленный луч, излучаемый такой указкой, можно использовать в охранной технике.

Внимание! Лазерное излучение опасно для глаз и может вызвать повреждение кожного покрова. При работе с источниками лазерного излучения избегайте попадания луча на людей.

Инфракрасные лазеры с их невидимым излучением широко используются в профессиональных охранных системах.

К сожалению, радиолюбители располагают пока лишь одной разновидностью лазерного излучателя - указкой красного свечения. Она имеет небольшую мощность излучения, не более нескольких милливатт, безопасна для людей и животных, однако не рекомендуется направлять лазерное излучение непосредственно в глаза.

Излучение лазерной указки в импульсном режиме настолько малозаметно, что в скрытности она мало уступает инфракрасным излучателям, а в части юстировки системы имеет перед ними явное преимущество

Схема импульсного излучателя на базе лазерной указки

Частоту следования вспышек лазера задает генератор, собранный на элементах DD1.1 и DD1.2. При указанных на схеме номиналах эта частота примерно равна 5 Гц. За счет дифференцирующей цепи C2R3 на выходе элемента DD1.4 формируются короткие импульсы длительностью 10 мкс. Эти импульсы открывают до насыщения транзистор VT1, и лазер ВИ формирует вспышки такой же длительности.

Для снижения общего энергопотребления излучателя введен резистор R6, понижающий напряжение питания микросхемы DD1 до 3 В. Тумблер SA1 предназначен для включения режима непрерывного излучения при юстировке.

Устройство собрано на печатной плате из двусторонне фольгированного стеклотекстолита толщиной 1 мм.

Фольгу под деталями используют лишь в качестве общего провода. Соединения с ней выводов конденсаторов, резисторов и других элементов показаны зачерненными квадратами; квадратом со светлой точкой в центре показано "заземление" вывода 7 микросхемы DD1.

Все резисторы - МЛТ-0,125. Конденсаторы С1 и С2 - КМ-6, СЗ и С4 - К53-30.

Лазерную указку нужно укоротить. Отступив от "окна" на 18 мм (конусообразный наконечник вообще удаляют), аккуратно опиливают ее корпус по кругу и отделяют батарейную часть. Со ставшей теперь доступной платы лазера демонтируют кнопку, а излишек платы откусывают (рис. 3 ).

Все конструктивные элементы излучателя монтируют на пластине 51x30 мм, вырезанной из листового ударопрочного полистирола толщиной 1,5...2 мм (рис. 4 ). Здесь: 1 - лазер в гнезде-обойме; 2 - перегородка для батареи питания; 3 - печатная плата; 4 - наклеенный на перегородку фиксатор печатной платы (две полоски полистирола); 5 - приклеенная к основанию полистироловая опора высотой 10 мм с резьбой под винт М2. Высота деталей на плате должна быть меньше 10 мм.

Корпус излучателя изготавливают из того же полистирола в виде открытой коробки. Габариты полностью смонтированного прибора - 56x34x19 мм.

Средний ток, потребляемый импульсным лазерным излучателем, не превышает 10 мкА. При этом импульсный ток в самом лазере - 25...30 мА. Подбором резистора R7 этот ток может быть изменен, в частности увеличен. При расчете импульсного тока нужно иметь в виду, что последовательно с резистором R7 включен резистор сопротивлением 50...60 Ом, "впечатанный" в саму плату лазера (см. рис. 3).

Источником питания излучателя служит 6-вольтная батарея типа 476. Батареи этого типоразмера (Ø13x25,2 мм) имеют емкость от 95 (алкалиновые) до 160 мА-ч (литиевые) и способны обеспечить непрерывную его работу по меньшей мере в течение года. Выводы к батарее лучше припаять, поскольку в охранной технике контакт прижимом не обеспечивает достаточной надежности. При столь малом энергопотреблении нет нужды и в выключателе питания (тоже, кстати, весьма ненадежном элементе). Излучатель сохраняет работоспособность при снижении напряжения питания до 4,5 В. Конечно, при этом уменьшается и яркость луча.

Принципиальная схема приемной головки, реагирующей на короткие вспышки лазерного излучателя, показана на рис. 5. Здесь BL1 - фотодиод, обладающий достаточным быстродействием и чувствительностью. Время его включения-выключения должно быть в 5...10 раз меньше длительности вспышки. Ряд подходящих фотодиодов приведен в таблице.

В ответ на каждую вспышку лазера на выходе микросхемы DA1 (вывод 10) возникает единичный импульс, пригодный для непосредственного управления КМОП-микросхемами.

Таблица параметров фотодиодов

Корпус головки должен быть светонепроницаемым. Его можно склеить из черного ударопрочного полистирола. Во избежание боковой подсветки к "окну" фотодиода рекомендуется приклеить бленду. Ее можно изготовить в виде "колодца" квадратного сечения из того же полистирола. Фотодиод можно закрыть красным светофильтром: он мало ослабит излучение лазера. Для защиты от сильных электрических наводок головку нужно заключить в металлический экран.

Головка имеет низкое выходное сопротивление и может быть связана с прочими элементами фотоприемника тонким трехпроводным шнуром длиной 1...2м. При установке вне помещения она должна быть защищена от непогоды. Потребляемый головкой ток не превышает 1,5 мА (при напряжении питания 6 В).

При юстировке системы лазер переводят в режим непрерывного излучения и наводку луча осуществляют визуально. Чтобы не расходовать энергию батареи GB1, на время настройки можно воспользоваться внешней 6-вольтной батареей.

Нет нужды говорить о том, что лазерный излучатель, работающий в охранной системе, должен быть не только точно наведен, но и "намертво" закреплен в выставленной позиции (если в системе есть зеркала, то это относится и к ним). Хотя это не значит, что луч лазера вообще не может отклоняться. Опыт показывает, что вспышку лазера можно зарегистрировать и по его излучению, рассеянному под малыми углами. Надежно фиксировались, например, вспышки лазера, удаленного на 50 м, если головка оставалась в круге диаметром 35 см.

КАТЕГОРИИ

ПОПУЛЯРНЫЕ СТАТЬИ

© 2024 «flemi.ru» — Ультразвуковое обследование. Брюшная полость, голова, грудная клетка