Получение Серебра. Чем отличается техническое серебро от ювелирного

История

Серебро известно человечеству с древнейших времён. Это связано с тем, что в своё время серебро, равно как и золото, часто встречалось в самородном виде — его не приходилось выплавлять из руд. Это предопределило довольно значительную роль серебра в культурных традициях различных народов. В Ассирии и Вавилоне серебро считалось священным металлом и являлось символом Луны. В Средние века серебро и его соединения были очень популярны среди алхимиков. С середины XIII века серебро становится традиционным материалом для изготовления посуды. Кроме того, серебро и по сей день используется для чеканки монет.

Происхождение названия

Достаточно очевидно, что русск. серебро, польск. srebro, болг. сребро, ст.-слав. сьребро восходят к праславянскому *sьrebro, которое имеет соответствия в балтийских (лит. sidabras, др.-прусск. sirablan) и германских (готск. silubr, нем. Silber, англ. silver) языках. Дальнейшая этимология за пределами германо-балто-славянского круга языков неясна, предполагают либо сближение с анатолийским subau-ro «блестящий», либо раннее заимствование из языков Ближнего Востока: ср. аккад. sarpu «очищенное серебро», от аккад. sarapu «очищать, выплавлять». По-гречески серебро — «ἄργυρος», «árgyros», от индоевропейского корня «*H₂erǵó-, *H₂erǵí-», означающего «белый», «блистающий». Отсюда происходит и его латинское название — «argentum».

Нахождение в природе

Среднее содержание серебра в земной коре (по Виноградову) 70 мг/т. Максимальные его концентрации устанавливаются в глинистых сланцах, где достигают 900 мг/т. Серебро характеризуется относительно низким энергетическим показателем ионов, что обуславливает незначительное проявление изоморфизма этого элемента и сравнительно трудное его вхождение в решётку других минералов. Наблюдается лишь постоянный изоморфизм ионов серебра и свинца. Ионы серебра входят в решётку самородного золота, количество которого иногда достигает в электруме почти 50 % по весу. В небольшом количестве ион серебра входит в решётку сульфидов и сульфосолей меди, а также в состав теллуридов, развитых в некоторых полиметаллических и особенно, в золото-сульфидных и золото-кварцевых месторождениях.

Определённая часть благородных и цветных металлов встречается в природе в самородной форме. Известны и документально подтверждены факты нахождения не просто больших, а огромных самородков серебра. Так, например, в 1477 году на руднике «Святой Георгий» (месторождение Шнееберг в Рудных горах в 40-45 км от города Фрайберг) был обнаружен самородок серебра весом 20 т. Глыбу серебра размером 1 х 1 х 2,2 м выволокли из горной выработки, устроили на ней праздничный обед, а затем раскололи и взвесили. В Дании, в музее Копенгагена, находится самородок весом 254 кг, обнаруженный в 1666 году на норвежском руднике Конгсберг. Крупные самородки обнаруживали и на других континентах. В настоящее время в здании парламента Канады хранится одна из добытых на месторождении Кобальт в Канаде самородных пластин серебра, имеющая вес 612 кг. Другая пластина, найденная на том же месторождении и получившая за свои размеры название «серебряный тротуар», имела длину около 30 м и содержала 20 т серебра. Однако, при всей внушительности когда-либо обнаруженных находок, следует отметить, что серебро химически более активно, чем золото, и по этой причине реже встречается в природе в самородном виде. По этой же причине растворимость серебра выше и его концентрация в морской воде на порядок больше, чем у золота (около 0,04 мкг/л и 0,004 мкг/л соответственно).

Известно более 50 природных минералов серебра, из которых важное промышленное значение имеют лишь 15-20, в том числе:

* самородное серебро;
* электрум (золото-серебро);
* кюстелит (серебро-золото);
* аргентит (серебро-сера);
* прустит (серебро-мышьяк-сера);
* бромаргерит (серебро-бром);
* кераргирит (серебро-хлор);
* пираргирит (серебро-сурьма-сера);
* стефанит (серебро-сурьма-сера);
* полибазит (серебро-медь-сурьма-сера);
* фрейбергит (медь-сера-серебро);
* аргентоярозит (серебро-железо-сера);
* дискразит (серебро-сурьма);
* агвиларит (серебро-селен-сера) и другие.

Как и другим благородным металлам, серебру свойственны два типа проявлений:
* собственно серебряные месторождения, где оно составляет более 50 % стоимости всех полезных компонентов;
* комплексные серебросодержащие месторождения (в которых серебро входит в состав руд цветных, легирующих и благородных металлов в качестве попутного компонента).
Собственно серебряные месторождения играют достаточно существенную роль в мировой добыче серебра, однако следует отметить, что основные разведанные запасы серебра (75 %) приходятся на долю комплексных месторождений.

Месторождения

Значительные месторождения серебра расположены на территориях следующих стран:

Германия, Испания, Перу, Чили, Мексика, Китай, Канада, США, Австралия, Польша, Россия, Казахстан, Румыния, Швеция, Чехия, Словакия, Австрия, Венгрия, Норвегия.
Также, месторождения серебра есть в Армении, Кипре, Сардинии.

Физические свойства

Чистое серебро — довольно тяжёлый (легче свинца, но тяжелее меди), необычайно пластичный серебристо-белый металл (коэффициент отражения света близок к 100 %). Тонкая серебряная фольга в проходящем свете имеет фиолетовый цвет. C течением времени металл тускнеет, реагируя с содержащимися в воздухе следами сероводорода и образуя налёт сульфида. Обладает высокой теплопроводностью. При комнатной температуре имеет самую высокую электропроводность среди всех известных металлов.

Химические свойства

Серебро, будучи благородным металлом, отличается относительно низкой реакционной способностью, оно не растворяется в соляной и разбавленной серной кислотах. Однако в окислительной среде (в азотной, горячей концентрированной серной кислоте, а также в соляной кислоте в присутствии свободного кислорода) серебро растворяется:

Ag + 2HNO3(конц.) = AgNO3 + NO2 + H2O

Растворяется оно и в хлорном железе, что применяется для травления:

Ag + FeCl3 = AgCl + FeCl2

Серебро также легко растворяется в ртути, образуя амальгаму (жидкий сплав ртути и серебра).

Серебро не окисляется кислородом даже при высоких температурах, однако в виде тонких плёнок может быть окислено кислородной плазмой или озоном при облучении ультрафиолетом. Во влажном воздухе в присутствии даже малейших следов двухвалентной серы (сероводород, тиосульфаты, резина) образуется налёт малорастворимого сульфида серебра, обуславливающего потемнение серебряных изделий:

4Ag + 2H2S + O2 = 2Ag2S + 2H2O

Свободные галогены легко окисляют серебро до галогенидов:

2Ag + I2 = 2AgI

Однако на свету эта реакция обращается, и галогениды серебра (кроме фторида) постепенно разлагаются.
При нагревании с серой серебро даёт сульфид.

Наиболее устойчивой степенью окисления серебра в соединениях является +1. В присутствии аммиака соединения серебра (I) дают легко растворимый в воде комплекс +. Серебро образует комплексы так же с цианидами, тиосульфатами. Комплексообразование используют для растворения малорастворимых соединений серебра, для извлечения серебра из руд. Более высокие степени окисления (+2, +3) серебро проявляет только в соединении с кислородом (AgO, Ag2O3) и фтором (AgF2, AgF3), такие соединения гораздо менее устойчивы, чем соединения серебра.
Соли серебра, за редким исключением (нитрат, перхлорат, фторид), нерастворимы в воде, что часто используется для определения ионов галогенов (хлора, брома, йода) в водном растворе.

Применение

* Так как обладает наибольшей электропроводностью, теплопроводностью и стойкостью к окислению кислородом при обычных условиях, применяется для контактов электротехнических изделий, например, контакты реле, ламели, а также многослойных керамических конденсаторов.
* В составе припоев: медносеребряный припой ПСР-45 используется для пайки медных котлов, чем выше процент серебра, тем выше качество; иногда также, добавляя его к свинцу в количестве 5 %, им заменяют оловянный припой.
* В составе сплавов: для изготовления катодов гальванических элементов (батареек).
* Применяется как драгоценный металл в ювелирном деле (обычно в сплаве с медью, иногда с никелем и другими металлами).
* Используется при чеканке монет, наград — орденов и медалей.
* Галогениды серебра и нитрат серебра используются в фотографии, так как обладают высокой светочувствительностью.
* Йодистое серебро применяется для управления климатом («разгон облаков»)
* Из-за высочайшей электропроводности и стойкости к окислению применяется:
o в электротехнике и электронике как покрытие ответственных контактов и проводников в высокочастотных цепях
o в СВЧ технике как покрытие внутренней поверхности волноводов
* Используется как покрытие для зеркал с высокой отражающей способностью (в обычных зеркалах используется алюминий).
* Часто используется как катализатор в реакциях окисления, например при производстве формальдегида из метанола.
* Используется как дезинфицирующее вещество, в основном для обеззараживания воды. Некоторое время назад для лечения простуды использовали раствор протаргол и колларгол, которые представляли собой коллоидное серебро.

Области применения серебра постоянно расширяются и его применение — это не только сплавы, но и химические соединения. Определённое количество серебра постоянно расходуется для производства серебряно-цинковых и серебряно-кадмиевых аккумуляторных батарей, обладающих очень высокой энергоплотностью и массовой энергоёмкостью и способных при малом внутреннем сопротивлении выдавать в нагрузку очень большие токи.
Серебро используется в качестве добавки (0,1—0,4 %) к свинцу для отливки токоотводов положительных пластин специальных свинцовых аккумуляторов (очень большой срок службы (до 10—12 лет) и малое внутреннее сопротивление).

Хлорид серебра используется в хлор-серебряно-цинковых батареях, а также для покрытий некоторых радарных поверхностей. Кроме того, хлорид серебра, прозрачный в инфракрасной области спектра, используется в инфракрасной оптике.
Монокристаллы фторида серебра используются для генерации лазерного излучения с длиной волны 0,193 мкм (ультрафиолетовое излучение).
Серебро используется в качестве катализатора в фильтрах противогазов.
Ацетиленид серебра (карбид) изредка применяется как мощное инициирующее взрывчатое вещество (детонаторы).
Фосфат серебра используется для варки специального стекла, используемого для дозиметрии излучений. Примерный состав такого стекла: фосфат алюминия — 42 %, фосфат бария — 25 %, фосфат калия — 25 %, фосфат серебра — 8 %.
Перманганат серебра, кристаллический тёмно-фиолетовый порошок, растворимый в воде; используется в противогазах. В некоторых специальных случаях серебро так же используется в сухих гальванических элементах следующих систем: хлор-серебряный элемент, бром-серебряный элемент, йод-серебряный элемент.
Серебро зарегистрировано в качестве пищевой добавки Е174.

В медицине

Одной из важных сфер использования серебра являлась алхимия, тесно связанная с медициной. Уже за 3 тыс. лет до н. э. в Китае, Персии и Египте были известны лечебные свойства самородного серебра. Древние египтяне, например, прикладывали серебряную пластину к ранам, добиваясь их быстрого заживления. О способности этого металла долгое время сохранять воду пригодной для питья также знали с древних времён. Например, персидский царь Кир в военных походах перевозил воду только в серебряных сосудах. Знаменитый средневековый врач Парацельс лечил некоторые болезни «лунным» камнем — азотнокислым серебром (ляпис). Этим средством в медицине пользуются и поныне.

Развитие фармакологии и химии, появление множества новых природных и синтетических лекарственных форм не уменьшили внимания современных медиков к этому металлу. В наши годы оно продолжает широко использоваться в индийской фармакологии (для изготовления традиционных в Индии аурведических препаратов). Аюрведа (Ayurveda) — это древний способ диагностики заболеваний и лечения, малоизвестный за пределами Индии. Более 500 млн человек в Индии принимают такие препараты, поэтому очевидно, что потребление серебра в фармакологии страны очень велико. Сравнительно недавно современные исследования клеток организма на содержание серебра привели к заключению, что оно повышено в клетках мозга. Таким образом, сделан вывод, что серебро является металлом необходимым для жизнедеятельности человеческого организма и что открытые пять тысячелетий назад лечебные свойства серебра не утратили своей актуальности и в настоящее время.

Мелкораздробленное серебро широко применяется для обеззараживания воды. Вода, настоянная на порошке серебра (как правило, применяют посеребрённый песок) или профильтрованная через такой песок, почти полностью обеззараживается. Серебро в виде ионов активно взаимодействует с различными другими ионами и молекулами. Малые концентрации полезны, так как серебро уничтожает многие болезнетворные бактерии. Установлено также, что ионы серебра в малых концентрациях способствуют повышению общей сопротивляемости организма к инфекционным заболеваниям[источник не указан 569 дней]. Развивая это направление использования, в довершение к зубным пастам, защитным карандашам, керамическим плиткам, покрытым серебром, в Японии даже стали изготавливать ладан, который содержит ионизированное серебро и при сжигании высвобождает ионы, убивающие бактерии.На этом свойстве серебра основано действие таких лекарственных препаратов, как протаргол, колларгол и др., представляющих собой коллоидные формы серебра и способствующих излечению гнойных поражений глаз. В настоящее время протаргол и колларгол применяются всё реже в связи с низкой их эффективностью и высокой вероятностью отравления серебром.

Давно известно что если к серебряным электродам приложить напряжение в несколько вольт, то их обеззараживающее действие заметно усиливается (данный эффект использовался в портативных бытовых приборах для обеззараживания воды). Значительное усиление эффекта наблюдается если на поверхности электродов выращивать серебряные наностолбики. При этом напряжение не обязательно прикладывать непосредственно к электродам, а можно создавать внешним полем.
Ещё более эффективно действует слабый раствор комплексного соединения серебра с аммиаком, применяющийся в медицине под названием аммарген (производное от слов «аммиак» и «аргентум»). Нитраты серебра в виде раствора аммаргена широко применяются для промывания ран или слизистой оболочки при различных воспалительных состояниях, а также используются в изготовлении различных антибактериальных средств.

Физиологическое действие

Следы серебра (порядка 0,02 мг/кг веса) содержатся в организмах всех млекопитающих. Но его биологическая роль недостаточно изучена. У человека повышенным содержанием серебра (0,03 мг на 1000 г свежей ткани, или 0,002 вес.% в золе) характеризуется головной мозг. Интересно, что в изолированных ядрах его нервных клеток — нейронах — серебра гораздо больше (0,08 вес.% в золе).

С пищевым рационом человек получает в среднем около 0,1 мг. Ag в сутки. Относительно много его содержит яичный желток (0,2 мг в 100 г). Выводится серебро из организма главным образом с калом.
Ионы серебра обладают исключительно сильно выраженными бактерицидными свойствами. Небольшого количества этих ионов, перешедших из металла в воду, достаточно, чтобы она не портилась длительное время. Это было известно ещё в древности. 2500 лет назад персидский царь Кир в своих военных походах использовал серебряные сосуды для хранения воды. Покрытие поверхностных ран серебряными пластинами практиковалось ещё в древнем Египте. Очистку больших количеств воды, основанную на бактерицидном действии серебра, особенно удобно производить электрохимическим путём. Нижний предел бактерицидного действия серебра оценивается содержанием его в воде порядка 1 мкг/л.

Однако нужно помнить, что все-таки ионы серебра не являются универсальным антисептиком, его значительное бактерицидное действие проявляется лишь в концентрациях, которые токсичны для человека (особенно при длительном употреблении). Как и все тяжёлые металлы, серебро при избыточном поступлении в организм токсично.
По санитарным нормам США, содержание серебра в питьевой воде не должно превышать 0,05 мг/л. При длительном поступлении в организм избыточных доз серебра развивается аргирия, внешне выражающаяся серой окраской слизистых оболочек и кожи, причем преимущественно на освещённых участках тела, что обусловлено отложением частичек восстановленного серебра. Какие-либо расстройства самочувствия заболевших аргирией наблюдаются далеко не всегда. Вместе с тем отмечалось, что они не подвержены инфекционным заболеваниям.

Добыча серебра

Предполагается, что первые месторождения серебра находились в Сирии в (5000-3400 гг. до н. э.), откуда металл привозили в Египет.
В VI—V веках до н. э. центр добычи серебра переместился в Лаврийские рудники в Греции.
C IV по середину I века до н. э. лидером по производству серебра были Испания и Карфаген.
Во II—XIII вв. действовало множество рудников по всей Европе, которые постепенно истощались.
В XV—XVI вв. на первый план выходят Рудные горы. Крупнейшим из старых месторождений самородного серебра является открытое в 1623 году месторождение Конгсберг в Норвегии.
Освоение Америки привело к открытию богатейших месторождений серебра в Кордильерах. Главным источником становится Мексика, где в 1521—1945 гг. было добыто около 205 тыс. т металла — около трети всей добычи за этот период. В крупнейшем месторождении Южной Америки — Потоси — за период с 1556 по 1783 год добыто серебра на 820 513 893 песо и 6 «прочных реалов» (последний в 1732 году равнялся 85 мараведи).
В России первое серебро было добыто 1704 году на Нерчинских рудниках Забайкалья. Некоторое количество добывалось на Алтае. Лишь в середине XX века освоены многочисленные месторождения на Дальнем Востоке.
В 2008 году всего добыто 20 900 т серебра. Лидером добычи является Перу (3600 т), далее следуют Мексика (3000 т), Китай (2600 т), Чили (2000 т), Австралия (1800 т), Польша (1300 т), США (1120 т), Канада (800 т).
На 2008 год, лидером добычи серебра в России является компания «Полиметалл», добывшая в 2008 году 535 т.
Мировые запасы серебра оцениваются в 570 000 т.

За что человек любит серебро? В первую очередь – за красоту! Серебряные украшения ценились во все века. Характерный внешний вид благородного металла стал нарицательным понятием. Выражение «алмазная твердость» не требует уточнения; точно так же не возникает проблем с пониманием «серебряного» или «серебристого блеска».


Быть эталоном красоты – почетная обязанность серебра. С давних лет приносит драгоценный металл и практическую пользу.

Серебро в первую очередь – сокровище

Не превратиться в предмет накопления серебро просто не могло. Обладание самородными серебряными слитками первоначально являлось самоцелью у каждого искателя металлов. Такова природа человеческой психологии: мы склонны к накоплению вещей, вызывающих позитивный эстетический отклик в душе. Серебряные самородки заменяли нашим пращурам еще не созданные культурные ценности.

Так что нет ничего удивительно в том, что вскоре после обретения человеком самосознания серебро сделалось объектом вожделения. А раз так – стало предметом накопления, превратилось в драгоценность.

Лидийцы изобрели монету

Это сегодня деньги, как количественный эквивалент труда, являют собой условность. За многие сотни лет до нашей эры деньги представляли собой совершенно самостоятельную ценность. Потому что чеканились денежные знаки (монеты) – из золота и серебра!

Введение в оборот серебряных монет, предпринятое древними греками за тысячу лет до Новой Эры, ознаменовало революционные изменения в судьбе благородного металла. С тех прошли десятки веков. Уже давно фактическая стоимость серебра превышает всякий мыслимый номинал монеты, но выпуск серебряных денег – в качестве объекта инвестирования и коллекционирования – продолжается.

Серебряные украшения популярней золотых?

Во многих случаях – да! Парадокс серебра как ювелирного материала известен несколько веков, если не тысячелетий. По всем законам колористики цвет благородного металла относится к «холодным» оттенкам. Однако блеск серебра мы воспринимаем как живой и теплый, манящий и загадочный, чарующий и притягательный.

В отличие от тускловатого величия платины, бескомпромиссного жара золота и бесстрастного отблеска нержавеющей стали, сияние серебра ощущается человеком как нечто близкое, интимное, проникновенное. Серебряный блеск глубок: ювелирное изделие из серебра словно светится внутренним светом.

Таково субъективное восприятие серебра человеком. Объективно же этот металл – незаменимая оправа для драгоценных камней любого качества и оттенка. «Закованные» в серебро бесцветные камни играют всеми цветами радуги. Едва оцвеченные минералы в серебряной оправе выглядят контрастно и броско. Малые скульптурные формы, выполненные из серебра, воспринимаются с сильнейшим душевным откликом – об этом писал еще Бенвенуто Челлини...

Серебром лечат...

...причем с глубокой древности. Бактерицидные свойства серебра были известны еще персидским завоевателям. Бурдюки осеребренной воды транспортировались их караванами месяцами – и влага оставалась живительной и свежей.

Сегодня серебро активно используется в опреснительных установках океанских лайнеров. Электрохимическое растворение десяти граммов серебра в пятидесяти кубометрах воды полностью обеззараживает жидкость.

Древние египтяне и вслед за ними греки использовали серебряные пластины как лечебные аппликаторы для ран – и им действительно во многих случаях удавалось избежать гнойных осложнений. В наше время для достижения сходных целей применяется раствор коллоидного серебра. Некоторые галеновы препараты содержат в себе различные соединения серебра.

Сплав из 75% серебра и 25% палладия используется для зубного протезирования. Сплавы серебра с золотом, медью, оловом, цинком и ртутью представляют собой эффективный пломбировочный материал.

Техническое серебро

Техническим серебром называются серебряные сплавы, находящие применение в приборах и машинах. Серебряные припои не окисляются даже в присутствии компонентов ракетного топлива. Легкие, прочные, устойчивые к воздействию агрессивных сред и сил титановые детали спаиваются только чистым серебром.

Эталонная электропроводность серебра сделала этот металл материалом выбора в ответственных узлах электроники. Там, где даже незаметная окисная пленка создает помехи для движения микротоков, используются серебряные токопроводящие детали. Благородный металл не меняет своих свойств, обеспечивая высокую работоспособность прибора в течение расчетного срока эксплуатации.

Для разгона облаков в воздухе распыляется йодистое серебро. Масштабная завеса из йодида серебра способна изменить мощность циклона: увеличивая темпы конденсации водяных паров, серебряный реагент лишает вихрь энергетической подпитки. В результате скорость ветра снижается, разрушительная способность грозного природного явления падает.

Высокая отражающая способность серебра востребована не только в конструкциях зеркал и рефлекторов. Трубчатые волноводы, предназначенные для передачи высокочастотных электромагнитных колебаний, имеют серебряное покрытие.

Промышленная химия нередко использует серебро в качестве катализатора процессов органического синтеза. Кристаллы фторида серебра способны генерировать лазерные лучи ультрафиолетового диапазона. Карбид серебра взрывоопасен: это свойство сделало его одним из материалов производства детонаторов. Хлорид серебра – действующий реагент высокоемкостных серебряно-цинковых аккумуляторных батарей. Пленочная фотография немыслима без использования светочувствительного нитрата серебра.

Серебро в стекле

О свинцовом стекле известно всем. Это хрусталь – бесцветный, переливающийся в лучах яркого освещения. А вот стекло, в которое при варке добавлено азотнокислое серебро, бесцветным остается недолго. Всего лишь две десятых процента благородного металла – и стекло обретает красивую желтую окраску – но не сразу...

Что любопытно в технологическом процессе, AgNO3 выступает лишь в роли носителя иона серебра. При растворении в жидкой стеклянной массе мельчайшие частички серебра насыщают расплавленный оксид кремния, однако внешне это не проявляется никак. Лишь отжиг уже готового стекла приводит к проявлению цвета. Так изготавливаются светофильтры высокого качества.

Свойство галогенидов серебра разлагаться с выделением металлического серебра под действием света позволяет создавать реагирующие на уровень освещенности светофильтры. Растворенные в стекле галогениды меняют прозрачность светофильтра с 88% (при неярком освещении) до 22% (и даже до 5%) при ярком солнечном свете. Популярнейшие очки-хамелеоны оснащены именно такими стеклами.


Для получения оранжевого стекла используется смесь золота и серебра. При этом лучше всего драгоценные металлы принимает хрусталь, 24% которого составляет оксид свинца PbO.

Высокая химическая активность азотнокислого серебра снискала ему славу «адского камня». Еще во времена алхимиков AgNO3 получил прозвище «ляпис инферналис». Ляписом состав зовется по сей день, хотя в переводе с латинского это слово обозначает всего лишь «камень».

Проект космического зеркала

В 1968-м году Совет Безопасности ООН рассматривал протест, поданный делегацией Камбоджи. Азиатское государство воспротивилось планам Америки запустить на орбиту складную конструкцию огромного зеркала.

Предполагалось, что полимерная емкость с серебряным покрытием будет наполнена разреженным газом, и этот надувной «матрац» послужит зеркалом для ночного освещения территории в 100 тысяч квадратных километров.

Однако ночное освещение снижает продуктивность растениеводства, и реализовать амбициозный проект Соединенным Штатам было запрещено.

Ещё за 2500 лет до нашей эры египетские воины использовали серебро для лечения боевых ран: накладывали на них тонкие серебряные пластины, и раны быстро заживали. В русской же православной церкви святую воду для прихожан всегда выдерживали в серебряных сосудах. Существуют много историй о том как серебряные сосуды спасали жизни, хранившим в них воду. Также существует мнение, что серебро придает силу, носящему его.

  • Так как обладает наибольшей электропроводностью, теплопроводностью и стойкостью к окислению кислородом при обычных условиях, применяется для контактов электротехнических изделий, например, контакты реле, ламели, а также многослойных керамических конденсаторов.
  • В составе припоев: медносеребряный припой ПСР-45 используется для пайки медных котлов, чем выше процент серебра, тем выше качество; иногда также, добавляя его к свинцу в количестве 5 %, им заменяют оловянный припой.
  • В составе сплавов: для изготовления катодов гальванических элементов (батареек).
  • Применяется как драгоценный металл в ювелирном деле (обычно в сплаве с медью, иногда с никелем и другими металлами).
  • Используется при чеканке монет, наград - орденов и медалей.
  • Йодистое серебро применяется для управления климатом ("разгон облаков")
  • Из-за высочайшей электропроводности и стойкости к окислению применяется:
    • в электротехнике и электронике как покрытие ответственных контактов
    • в СВЧ технике как покрытие внутренней поверхности волноводов
  • Используется как покрытие для зеркал с высокой отражающей способностью (в обычных зеркалах используется алюминий). Определяющую роль его в этом вопросе сыграла его высокая отражательная способность и пластичность: из серебра можно получить пластинки толщиной всего лишь 0,25 мкм!
  • Часто используется как катализатор в реакциях окисления, например при производстве формальдегида из метанола.
  • Используется как дезинфицирующее вещество, в основном для обеззараживания воды. Некоторое время назад для лечения простуды использовали раствор протаргол и колларгол, которые представляли собой коллоидное серебро.

Области применения серебра постоянно расширяются и его применение - это не только сплавы, но и химические соединения. Определённое количество серебра постоянно расходуется для производства серебряно-цинковых и серебряно-кадмиевых аккумуляторных батарей, обладающих очень высокой энергоплотностью и массовой энергоёмкостью и способных при малом внутреннем сопротивлении выдавать в нагрузку очень большие токи.

В химической промышленности применяются аппараты из серебра (для получения ледяной уксусной кислоты, фенола), лабораторная посуда (тигли или лодочки, в которых плавятся чистые щелочи или соли щелочных металлов, оказывающие разъедающее действие на большинство других металлов), лабораторные инструменты (шпатели, щипцы, сита и др.). Серебро и его соединения применяются в качестве катализаторов в реакциях обмена водород - дейтерий, детонации смеси воздух - ацетилен, при сжигании окиси углерода, окислении спиртов в альдегиды кислоты и др.
В пищевой промышленности применяются серебряные аппараты в которых приготовляют фруктовые соки и другие напитки. В медицине известен ряд фармацевтических препаратов, содер­жащих коллоидное серебро.
Металлическое серебро служит для изготовления высококачественных оптических зеркал путем термического испарения. Бруски (или электролитический порошок) серебра служат положительными электродами в аккумуляторах, в которых отрицательными электродами являются пластинки из окиси цинка, электролит - едкое кали.
Существенную долю серебра потребляет электротехническая промышленность для серебрения медных проводников и при использовании высокочастотных волноводов. Серебро используется при производстве транзисторов, микросхем и других радиоэлектронных компонентов.

Серебро используется в качестве добавки (0,1-0,4 %) к свинцу для отливки токоотводов положительных пластин специальных свинцовых аккумуляторов (очень большой срок службы (до 10-12 лет) и малое внутреннее сопротивление).

Хлорид серебра используется в хлор-серебряно-цинковых батареях, а также для покрытий некоторых радарных поверхностей. Кроме того, хлорид серебра, прозрачный в инфракрасной области спектра, используется в инфракрасной оптике.

Монокристаллы фторида серебра используются для генерации лазерного излучения с длиной волны 0,193 мкм (ультрафиолетовое излучение).

Серебро используется в качестве катализатора в фильтрах противогазов.

Ацетиленид серебра (карбид) изредка применяется как мощное инициирующее взрывчатое вещество (детонаторы).

Фосфат серебра используется для варки специального стекла, используемого для дозиметрии излучений. Примерный состав такого стекла: фосфат алюминия - 42 %, фосфат бария - 25 %, фосфат калия - 25 %, фосфат серебра - 8 %.

Перманганат серебра, кристаллический тёмно-фиолетовый порошок, растворимый в воде; используется в противогазах. В некоторых специальных случаях серебро так же используется в сухих гальванических элементах следующих систем: хлор-серебряный элемент, бром-серебряный элемент, йод-серебряный элемент.

Серебро зарегистрировано в качестве пищевой добавки Е174.

Применение серебра в фотографии

В 1737 г. немецкий ученый И. Шульце впервые обнаружил светочувствительность нитрата серебра. Однако лишь через 100 лет после этого открытия появилась первая фотография (19 августа 1839 г.) В этот день в Парижской академии наук было сделано сообщение о способе получения изображения. Такой метод фотографии впоследствии был назван дагеротипом. Изображение получали обработкой парами ртути экспонированного слоя AgI, нанесенного на отполированную серебряную пластину. На пластине в местах действия света образуется серебряная амальгама, рассеивающая свет. После удаления избытка AgI и обнажения зеркальной поверхности изображение можно наблюдать, держа пластину под определенным углом.
С тех пор коренным образом изменилась технология получения фотографического изображения. Однако и сейчас основным светочувствительным материалом для фотографии являются кристаллы галогенидов серебра. Удивительно удачное сочетание в них различных физико-химических свойств позволило в относительно короткий срок разработать оптимальный способ получения фотографического изображения. Причем практическая фотография значительно определила теоретическое объяснение достигнутых результатов. Правда, в настоящее время этот разрыв довольно быстро сокращается. Но широкое применение фотографии ведет к истощению мировых запасов серебра и его удорожанию.
Кроме кинофотопромышленности, серебро употребляется в приборостроении и электромашиностроении, где используются его свойства отличного малоокисляющегося проводника тока. Химическая промышленность использует серебро для производства предметов лабораторного оборудования, стойких к действию щелочных растворов. Серебро так же идет на изготовление медицинских препаратов (колларгол, протаргол). Значительная доля серебра употребляется ювелирной промышленностью для изготовления драгоценных украшений, серебряной посуды и т.п.

Использование серебряной посуды

Столовое серебро не только признак благополучия или богатства, но и средство профилактики и здоровья.

Из истории: известно, что за 2500 лет до Рождества Христова египетские воины использовали серебро для лечения своих ран - накладывали на них очень тонкие серебряные пластины, и раны быстро заживали.

Персидский царь Кир, по свидетельству Геродота, во время длительных походов хранил воду только в серебряных бочках. Таким образом ему удалось избежать множества заболеваний, распространенных в то время. В конце XIX столетия швейцарский ботаник Карл Негели установил, что под влиянием серебра, введенного в воду, в ней гибнут все вредные микроорганизмы. Ионы серебра препятствуют размножению болезнетворных бактерий, вирусов и грибков.

Войско великого Александра Македонского двигалось с боями по странам Азии (IV века до нашей эры). После того как войска вступили на территорию Индии, среди воинов начались тяжелые желудочно-кишечные заболевания...

После ряда кровопролитных сражений и пышно отпразднованных побед весной 326 года Александр Македонский вышел к берегам Инда. Однако победить главного своего врага - болезнь - "непобедимое" войско Александра не могло. Воины, истощенные и обессиленные, отказались идти вперед к берегам Ганга, куда влекла Александра жажда завоеваний. Осенью 326 года войска Александра начали отступление. Сохранившиеся описания истории походов Александра Македонского показывают, что рядовые воины болели чаще, чем военачальники, хотя последние находились в походе в одинаковых условиях с рядовыми воинами и в равной степени делили с ними все неудобства и лишения походной жизни. Только через 2250 лет причина различной заболеваемости воинов Александра Македонского была найдена. Она заключалась в разности снаряжения: рядовому воину полагался оловянный бокал, а военачальнику - серебряный.

Кроме того, столовое серебро на протяжении многих веков считалось символом достатка и респектабельности. Известен факт, что в семье графа Орлова, одного из фаворитов Екатерины II, в обиходе был сервиз, состоявший из 3275 серебряных предметов, на изготовление которых ушло более 2 тонн серебра.

Антибактериальные свойства серебра

На всех космических шаттлах при подготовке к употреблению вода обогащается серебром; на авиалайнерах используются серебряные водяные фильтры. Все чаще при очистке воды в бассейнах применяется серебро - оно не раздражает слизистые оболочки и более эффективно как антисептик. В Японии с помощью серебра очищается воздух. В Швейцарии широко применяют серебряные фильтры в домах и офисах.

Основоположником научного изучения механизма действия серебра на микробную клетку является швейцарский ботаник Карл Нигели, который в 80-е годы ХIХ века установил, что взаимодействие не самого металла, а его ионов с клетками микроорганизмов вызывает их гибель. Это явление он назвал олигодинамией (от греч. «олигос» - малый, следовый, и «динамос» - действие, т.е. действие следов). Ученый доказал, что серебро проявляет олигодинамическое действие только в растворенном (ионизированном) виде.

Немецкий ученый Винцент, сравнивая активность некоторых металлов, установил, что наиболее сильным бактерицидным действием обладает серебро, меньшим - медь и золото.

Большой вклад в изучение антимикробных свойств серебряной воды, ее применения для обеззараживания питьевой воды и пищевых продуктов внесен академиком Л.А. Кульским. Его экспериментами, а позднее и работами других исследователей доказано, что именно ионы металлов и их диссоциированные соединения (вещества, способные распадаться на ионы) вызывают гибель микроорганизмов. Медико-биологическими исследованиями установлено, что бактерицидные свойства серебра объясняются уникальной способностью его ионов блокировать ферменты болезнетворных микроорганизмов, что приводит к их гибели. При этом микроорганизмы, необходимые для жизнедеятельности человека, сохраняются.

Пробы серебра

Проба (нем. Probe, от лат. probo - испытываю, оцениваю) благородных металлов, количественное содержание золота, серебра, платины или палладия (то есть благородных металлов) в лигатурном сплаве, из которого изготовляются ювелирные изделия, зубопротезные диски, монеты, медали и другое.

Система обозначения проб

Цвет сплава

Состав лигатуры

Основное применение

метрическая

золотниковая

каратная

Сплавы серебра

Филигранные изделия тонкой работы

Предметы сервировки стола

Филигранные изделия, изделия с эмалью

Ювелирно-бытовые изделия

Ювелирно-бытовые изделия

Белый с незначи-
тельной желтизной

Ювелирные изделия мелкой галантереи

Содержание статьи

СЕРЕБРО. Этот красивый металл известен людям с древнейших времен. Изделиям из серебра, найденным в Передней Азии, более 6 тысяч лет. Из сплава золота и серебра (электрума) были изготовлены первые в мире монеты. И в течение нескольких тысячелетий серебро, наряду с золотом и медью, было одним из основных монетных металлов. С цветом серебра связано и его латинское название Argentum, оно происходит от греческого argos – белый, блестящий.

Серебро в природе.

Серебро – редкий элемент; в земной коре его почти в тысячу раз меньше, чем меди – всего лишь около стотысячной доли процента. Известно же оно было так давно, потому что встречается в природе в виде самородков, иногда очень больших. Особенно богаты серебром были расположенные в Центральной Европе Рудные горы, Гарц, горы Богемии и Саксонии. Из серебра, добывавшегося близ города Иоахимсталя (ныне Яхимов в Чехии), были отчеканены миллионы монет. Они вначале так и назывались – «иоахимсталеры»; затем это название укоротилось до «талера» (в России эти монеты называли по первой части слова – «ефимками»). Талеры были в ходу по всей Европе, став самой распространенной большой серебряной монетой в истории. От талера произошло и название доллара. Немецкие серебряные рудники были настолько богаты, что из добывавшегося металла делали огромные вазы, столовые сервизы на сотни персон, на каждый из которых расходовали тонны серебра.

Легенда приписывает открытие серебряных рудников в 968 императору Оттону I Великому (912–973), основателю «Священной Римской империи германской нации». Во время учебы в Германии эту легенду услышал М.В.Ломоносов и изложил ее в одном из своих трудов. Оттон послал своего егеря Раммеля в лес для ловли диких зверей. На опушке леса Раммель спешился, а коня привязал к дереву. Ожидая хозяина, конь разрыл копытами землю и выбил оттуда тяжелые и светлые камни. Когда их показали императору, тот понял, что это богатая серебряная руда и велел учредить на этом месте рудники. А гору назвали Раммельсбергом... По свидетельству немецкого врача и металлурга Георга Агриколы (1494–1555) месторождение продолжало разрабатываться и при его жизни, то есть спустя шесть веков, но почти все серебряные самородки уже были найдены в 14–16 вв. Так, в 1477 в саксонском округе Цвиккау близ города Шнееберга был добыт самородок массой 20 тонн (современные геологи полагают, что он частично включал минерал аргентит). Серебряные рудники продолжали действовать ещё при жизни Ломоносова. Ныне они в значительной степени истощены.

После открытия и завоевания Америки множество самородков серебра было найдено на территории современных Перу, Чили, Мексики, Боливии. Так, в Чили был обнаружен самородок в виде пластины массой 1420 кг. Многие элементы имеют «географические» названия, Аргентина же – единственная страна, названная по уже известному элементу. Последние из самых крупных самородков серебра найдены уже в 20 в. в Канаде (провинция Онтарио). Один из них, названный «серебряный тротуар», имел длину 30 м и уходил вглубь земли на 18 м. Когда из него было выплавлено чистое серебро, его оказалось 20 тонн!

Самородное серебро находят редко; основная часть серебра в природе сосредоточена в минералах, которых известно более 50; в них серебро связано с серой, селеном, теллуром или галогенами. Основной серебряный минерал – аргентит Ag 2 S. Еще больше серебра рассеяно среди различных горных пород, так что основная часть добываемого в мире серебра получается в результате комплексной переработки полиметаллических руд, содержащих свинец, медь и цинк.

Свойства серебра.

Чистое серебро – сравнительно мягкий и пластичный металл: из 1 г серебра можно вытянуть тончайшую проволочку длиной почти 2 км! Серебро – довольно тяжелый металл: по плотности (10,5 г/см 3) оно лишь немного уступает свинцу. По электропроводности же и теплопроводности серебру нет равных (поэтому серебряная ложка в стакане горячего чая быстро нагревается). Плавится серебро при относительно низкой температуре (962° С), что значительно облегчает его обработку. Серебро легко сплавляется со многими металлами; небольшие добавки меди делают его более твердым, годным для изготовления различных изделий.

«Серебро не окисляется на воздухе, – писал Д.И.Менделеев в своем учебнике Основы химии , – а потому причисляется к разряду так называемых благородных металлов. Оно обладает белым цветом, гораздо более чистым, чем для всех других известных металлов, в особенности, когда оно представляет химическую чистоту... Химически чистое серебро столь мягко, что стирается весьма легко...» Но хотя серебро с кислородом непосредственно не реагирует, оно может растворять значительные количества этого газа. Даже твердое серебро при температуре 450° С способно поглотить пятикратный объем кислорода. Значительно больше кислорода (до 20 объемов на 1 объем серебра) растворяется в жидком металле.

Это свойство серебра приводит к красивому (и опасному) явлению – разбрызгиванию серебра, которое известно с древних времен. Если расплавленное серебро поглотило значительные количества кислорода, то затвердевание металла сопровождается высвобождением большого количества газа. Давлением выделяющегося кислорода корка на поверхности застывающего серебра разрывается, часто с большой силой. В результате происходит внезапное взрывное разбрызгивание металла.

При 170° С серебро на воздухе покрывается тонкой пленкой оксида Ag 2 О, а под действием озона образуются высшие оксиды Ag 2 O 2 и Ag 2 O 3 . Но особенно «боится» серебро иода, например, иодной настойки и сероводорода. Во многих домах есть серебряные (или посеребренные) изделия – старые монеты, ложки, вилки, подстаканники, кольца, цепочки, другие украшения. Со временем они часто тускнеют и даже могут почернеть. Причина – действие сероводорода. Его источником могут быть не только тухлые яйца, но и резина, некоторые полимеры. В присутствии влаги серебро легко реагирует с сероводородом с образованием на поверхности тончайшей пленки сульфида: 4Ag + 2H 2 S + O 2 = 2Ag 2 S + 2H 2 O; из-за неровностей поверхности и игры света такая пленка иногда кажется радужной. Постепенно пленка утолщается, темнеет, становится коричневой, а потом черной. Сульфид серебра не разрушается при сильном нагреве, не растворяется в кислотах и щелочах. Не очень толстую пленку можно удалить механически, отполировав предмет зубной пастой или порошком с мыльной водой.

Чтобы защитить поверхность серебра от потемнения ее пассивируют – покрывают защитной пленкой. Для этого хорошо очищенное изделие погружают на 20 минут в слегка подкисленный 1%-ный раствор дихромата калия K 2 Cr 2 O 7 при комнатной температуре. Образовавшаяся тонкая пленка Ag 2 Cr 2 O 7 защищает поверхность серебра.

Серебро легко растворяется в азотной и горячей концентрированной серной кислоте: 3Ag + 4HNO 3 = 3AgNO 3 + NO + 2H 2 O; 2Ag + 2H 2 SO 4 = Ag 2 SO 4 + SO 2 + 2H 2 O. Серебро растворяется также в концентрированных иодо- и бромоводородной кислотах, а в присутствии кислорода – и в хлороводородной (соляной) кислоте; реакции способствует образование комплексных галогенидов серебра: 2Ag + 4HI = 2H + H 2

Применение серебра.

Старинное применение серебра – изготовление зеркал (сейчас недорогие зеркала покрывают алюминием). Из серебра делают электроды для мощных цинк-серебряных аккумуляторов. Так, в аккумуляторах затонувшей американской подводной лодки «Трешер» было три тонны серебра. Высокую теплопроводность и химическую инертность серебра используют в электротехнике: из серебра и его сплавов делают электрические контакты, серебром покрывают провода в ответственных приборах. Из серебряно-палладиевого сплава (75% Ag) делают зубные протезы.

Огромные количества серебра раньше шли на изготовление монет. Сейчас из серебра делают в основном юбилейные и памятные монеты. Самая тяжелая современная серебряная монета, выпущенная в России в 1999, весит 3000 граммов, имеет тираж 150 штук. Посвящена она 275-летию Санкт-петербургского монетного двора. При высоком содержании серебра монеты и другие изделия весьма устойчивы на воздухе. Низкопробное серебро часто зеленеет. Зеленый налет содержит основной карбонат меди (CuOH) 2 CO 3 . Он образуется под действием углекислого газа, паров воды и кислорода.

Много серебра расходуется для изготовления ювелирных изделий и столовых приборов. На таких изделиях, как правило, ставят пробу, указывающую массу чистого серебра в граммах в 1000 г сплава (современная проба), либо число золотнитков в одном фунте сплава (дореволюционная проба). В 1 фунте содержится 96 золотников, поэтому, например, старой пробе 84 соответствует современная (84/96)1000 = 875. Так, с 1886 проба монет достоинством 1 рубль, 50 и 25 копеек была 86 2/5 (современная 900), а проба 20-, 15-, 10- и 5-копеечных монет (они чеканились с 1867 года) была 48 (500). Советские рубли и полтинники имели пробу 900, а более мелкие – 500. Современные серебряные изделия могут иметь пробу 960, 925 (так называемое «стерлинговое» серебро), 916, 875, 800 и 750.

Чтобы узнать содержание серебра в сплаве (его пробу), а также отличить серебряные изделия от сплавов, похожих на серебро, используют разные способы. Самый простой – реакция с так называемой пробирной кислотой для серебра, которая представляет собой раствор 3 мл концентрированной серной кислоты и 3 г дихромата калия в 32 мл воды. Каплю раствора наносят на поверхность изделия в незаметном месте. Под действием серной кислоты в присутствии сильного окислителя медь и серебро переходят в сульфаты CuSO 4 и Ag 2 SO4, далее сульфат серебра быстро превращается в нерастворимый рыхлый осадок дихромата серебра Ag 2 Cr 2 O 7 красного цвета. Он особенно хорошо заметен на поверхности, если каплю осторожно смыть водой. Красный осадок легко удалить механически; при этом на поверхности останется чуть заметное светлое пятнышко.

Этот метод не дает положительного результата, если в сплаве меньше 25% серебра (т.е. проба меньше 250). Такие бедные серебром сплавы встречаются довольно редко. В этом случае серебро можно обнаружить, если капнуть на поверхность азотной кислотой, а затем на то же место – раствором поваренной соли. В присутствии серебра в сплаве появится молочное помутнение: кислота растворяет небольшое количество металла, а хлорид-ионы дают с ионами серебра белый осадок нерастворимого хлорида AgCl.

Для более точного определения пробы ювелиры используют пробирный камень – черный камень с отшлифованной матовой поверхностью. Изделием проводят по камню, а оставшийся штрих сравнивают с цветом штрихов от эталонных сплавов известной пробы.

Многие декоративные серебряные изделия покрыты красивой чернью. Для чернения используют так называемую серную печень, содержащую полисульфид калия (в основном K 2 S 4). Под действие этого реагента на поверхности серебра образуется черная пленка сульфида Ag 2 S.

Соединения серебра часто неустойчивы к нагреванию и действию света. Открытие светочувствительности солей серебра привело к появлению фотографии и быстрому увеличению спроса на серебро. Еще в середине 20 во всем мире ежегодно добывалось около 10 000 тонн серебра, а расходовалось значительно больше (дефицит покрывался за счет старых запасов). Причем почти половина всего серебра шла на изготовление кино- и фотоматериалов. Так, обычная черно-белая фотопленка содержит (до проявления) до 5 г/м 2 серебра. Вытеснение черно-белых фотографий и кинофильмов цветными позволило значительно снизить потребление серебра.

Серебро применяется и в химической промышленности для изготовления катализаторов некоторых процессов, а в пищевой промышленности из серебра делают некорродирующие аппараты. Интересное, хотя и ограниченное применение находит иодид серебра; его используют для местного управления погодой путем распыления с самолетов. В присутствии даже ничтожных количеств AgI в облаках образуются крупные водяные капли, которые и выпадают в виде дождя. «Работать» могут уже мельчайшие частицы иодида серебра размером всего 0,01 мкм. Теоретически из кубического кристалла AgI размером всего 1 см можно получить 10 21 таких мельчайших частиц. Как подсчитали американские метеорологи, всего 50 кг иодида серебра вещества достаточно для «затравки» всей атмосферы над поверхностью США (а это 9 млн. квадратных километров!). Поэтому, несмотря на сравнительно высокую стоимость солей серебра, применение AgI с целью вызвать искусственный дождь оказывается практически выгодным.

Иногда требуется выполнить прямо противоположное задание: «разогнать» тучи, не дать пролиться дождю при проведении какого-либо важного мероприятия (например, Олимпийских игр). В этом случае иодид серебра нужно распылять в облаках заблаговременно, за десятки километров от места проведения торжества. Тогда дождь прольется на леса и поля, а в городе будет солнечная сухая погода.

Биохимия серебра.

Серебро не относится к биоэлементам; в живом веществе его содержание в 6 раз меньше, чем в земной коре. Однако присутствие ионов Ag + не безразлично для многих биохимических процессов.Хорошо известно бактерицидное действие малых концентраций серебра на питьевую воду. При содержании 0,05 мг/л ионы серебра обеспечивают высокую антимикробную активность, причем такую воду можно пить без вреда для здоровья. Вкус ее при этом не изменяется. (Для сравнения: для питья космонавтов допускается концентрация Ag + до 0,1 – 0,2 мг/л.). При содержании 0,1 мг/л вода консервируется на целый год, тогда как кипячение воды переводит ионы серебра в физиологически неактивную форму. Препараты серебра все шире используют для стерилизации питьевой воды (некоторые бытовые фильтры содержат «посеребренный» активированный уголь, выделяющий в воду очень малые дозы серебра). Для дезинфекции воды в бассейнах было предложено насыщать ее бромидом серебра. Насыщенный раствор AgBr содержит 7,3·10 –7 моль/л ионов серебра или около 0,08 мг/л, что безвредно для здоровья человека, но губительно для микроорганизмов и водорослей.

Бактерицидное действие ничтожных концентраций ионов серебра объясняется тем, что они вмешиваются в жизнедеятельность микробов, мешая работе биологических катализаторов – ферментов. Соединяясь с аминокислотой цистеином, входящей в состав фермента, ионы серебра препятствуют его нормальной работе. Аналогично действуют и ионы некоторых других тяжелых металлов, например, меди или ртути, но они намного токсичнее серебра. А главное – хлориды меди и ртути прекрасно растворяются в воде и потому представляют большую опасность для человека; любая же хорошо растворимая соль серебра в желудке человека под действием соляной кислоты быстро превращается в хлорид серебра, растворимость которого в воде при комнатной температуре составляет менее 2 мг/л.

Однако, как это часто бывает, то, что полезно в малых дозах, губительно в больших. Не составляет исключения и серебро. Так, введение значительных концентраций ионов серебра вызывает у животных снижение иммунитета, изменения в сосудистой и нервной тканях головного и спинного мозга, а при увеличении дозы – повреждения печени, почек, щитовидной железы. Описаны случаи отравления человека препаратами серебра с тяжелыми нарушениями психики. К счастью, в теле человека через 1–2 недели остается всего 0,02–0,1% введенного серебра, остальное выводится из организма.

При многолетней работе с серебром и его солями, когда они поступают в организм длительно, но малыми дозами, может развиться необычное заболевание – аргирия. Поступающее в организм серебро способно медленно отлагаться в виде металла в соединительной ткани и стенках капилляров разных органов, в том числе в почках, костном мозге, селезенке. Накапливаясь в коже и слизистых оболочках, серебро придает им серо-зеленую или голубоватую окраску, особенно сильную на открытых участках тела, подвергающихся действию света. Изредка окраска может быть настолько интенсивной, что кожа напоминает кожу негров.

Развивается аргирия очень медленно, первые ее признаки появляются через 2–4 года непрерывной работы с серебром, а сильное потемнение кожи наблюдается лишь спустя десятки лет. Раньше всего темнеют губы, виски и конъюнктива глаз, затем веки. Сильно могут быть окрашены слизистые оболочки рта и десны, а также лунки ногтей. Иногда аргирия проявляется в виде мелких сине-черных пятен. Раз появившись, аргирия не исчезает, и вернуть коже ее прежний цвет не удается. Если не считать чисто косметических неудобств, больной аргирией может не испытывать никаких болезненных ощущений или расстройств самочувствия (если не поражены роговица и хрусталик глаза); в этом отношении аргирию можно назвать болезнью лишь условно. Есть у этой болезни и своя «ложка меда» – при аргирии не бывает инфекционных заболеваний: человек настолько «пропитан» серебром, что оно убивает все болезнетворные бактерии, попадающие в организм.

Илья Леенсон

Серебро в медицине.

О том, что серебро металл ценный, знают все. Но не всем известно, что этот металл может и исцелять. Если хранить воду в серебряных сосудах или просто в контакте с серебряными изделиями, то мельчайшие частички серебра – ионы Ag + – переходят в раствор и убивают микроорганизмы и бактерии. Такая вода долго не портится и не «зацветает».

Об этом свойстве серебра знали очень давно. Персидский царь Кир II Великий (558–529 до н.э.) пользовался серебряными сосудами для хранения питьевой воды во время своих военных походов. Знатные римские легионеры носили нагрудники и налокотники из серебряных пластинок: при ранении прикосновение такой пластинки предохраняло от инфекции.

Тогда-то и было обнаружено, что прикосновение к кристаллам полученной серебряной соли не проходит бесследно: на коже остаются черные пятна, а при длительном контакте – глубокие ожоги. Нитрат серебра – бесцветный (белый) порошок, хорошо растворимый в воде, на свету он чернеет с выделением металлического серебра.

Медицинский ляпис, строго говоря, не чистый нитрат серебра, а его сплав с нитратом калия , иногда отлитый в виде палочек – ляписного карандаша. Ляпис оказывает прижигающее действие и применяется с давних пор. Однако пользоваться им надо чрезвычайно аккуратно: нитрат серебра может вызвать отравления и сильные ожоги. Хранить ляпис следует в местах, недоступных детям!

Лечебное действие нитрата серебра заключается в подавлении жизнедеятельности микроорганизмов; в небольших концентрациях он действует как противовоспалительное и вяжущее средство, более концентрированные растворы, как и кристаллы AgNO 3 , прижигают живые ткани. Это связано с образованием альбуминатов (белковых соединений) серебра при соприкосновении с кожей. Раньше ляпис применяли для удаления мозолей и бородавок, прижигания угрей. Да и теперь, если нет возможности прибегнуть к криотерапии (прижиганию сухим льдом или жидким азотом), чтобы безболезненно избавиться от ненужных наростов, пользуются ляписом.

Людмила Аликберова

Сыграло важную роль в развитии капитализма и формировании его хозяйственного механизма. Положение золота, исторически являющегося денежным металлом, изменялось с развитием капиталистических отношений. Каждой стадии капиталистического производства более или менее полно соответствовала определенная денежная система при общей тенденции уменьшения объема денежных функций золота. В настоящее время юридически устранено из денежного обращения и формально утратило всякую связь с денежной системой. Тем не менее, как бывший денежный металл продолжает сохранять ряд важных свойств, выделяющих его из остальной товарной массы.

Прежде всего, золото остается материалом, хранящимся в государственных резервах и частном накоплении, что связано с его высокой мобильностью и ликвидностью, т.е. способностью служить абсолютным покупательным и платежным средством. Для капиталистических государств золото является страховым и резервным фондом, позволяющим в случае крайней необходимости получить платежные средства в любой национальной валюте. И, хотя эти же средства могут быть получены при реализации и других валютных товаров, например, нефти, леса, зерна и т. д., золото по сравнению с ними обладает рядом преимуществ: высокой удельной ценностью, компактностью, транспортабельностью.

Золото обладает уникальным комплексом физических и химических свойств, которого не имеет ни один другой металл. Оно отличается высокой стойкостью к воздействию агрессивных сред, по электро- и теплопроводности уступает лишь серебру и меди. Золото очень технологично, из него легко изготовить сверхтонкую фольгу и микронную проволоку, оно хорошо паяется и сваривается под давлением, золотые покрытия легко наносятся на и керамику. Золото почти полностью отражает инфракрасные лучи, в сплавах обладает каталитической активностью. Такая совокупность полезных свойств золота является причиной его широкого использования в важнейших отраслях современной техники: электронике, технике связи, космической и авиационной технике, ядерной энергетике и т. д.

Золото и его широко применяют для изготовления контактов в слаботочной технике (современные системы связи и управления, ЭВМ). Хорошая электропроводность и неокисляемость золота обеспечивает надежную работу таких контактов в течение длительного срока службы.

В виде тонких покрытий на стекле, керамике, кварце золото широко используют в электронных устройствах, полупроводниковых элементах, микросхемах для передачи электрического тока. Такие пленки: отличаются высокой электропроводностью и коррозионной стойкостью.

Ценными свойствами обладают припои на основе золота. Они могут смачивать самые различные материалы, имеют высокую коррозионную стойкость, технологичность, обеспечивают большую прочность и жаропрочность паяных соединений. Низкое давление пара этих припоев позволяет использовать их для пайки вакуумноплотных швов. Основным потребителем золотых припоев является электронная промышленность, где их применяют для пайки деталей и узлов волноводов, электронных трубок и ламп, радарного оборудования, вакуумных приборов, при монтаже полупроводниковых интегральных схем. Припои; на основе золота используют также для пайки наиболее ответственных узлов ядерных энергетических установок, самолетных и ракетных двигателей, космической аппаратуры и т. д.

Золото и его употребляют для изготовления прецизионных потенциометров, термопар, термометров сопротивления.

Благодаря высокой отражательной способности по отношению к инфракрасным лучам, покрытия золотом используют для защиты космических аппаратов от солнечной радиации. Так, некоторые детали космических кораблей «Аполлон» и снаряжения космонавтов были покрыты тонким слоем золота.

В химической промышленности плакированные золотом стальные трубы служат для транспортирования особо агрессивных жидкостей, Некоторые золота применяют в качестве катализаторов.

Значительные количества золота потребляет стоматология: коронки и зубные протезы изготовляют из сплавов золота с серебром, медью, никелем, платиной, цинком. Такие сплавы сочетают коррозионную стойкость с высокими механическими свойствами.

Соединения золота входят в состав некоторых медицинских препаратов, используемых для лечения ряда заболеваний (туберкулеза, ревматических артритов и т.д.). Радиактивное золото используют при лечении злокачественных опухолей.

Традиционным и самым крупным потребителем золота является ювелирная промышленность. Ювелирные изделия изготовляют не из чистого золота, а из его сплавов с другими металлами, значительно превосходящими золото по механической прочности и стойкости. В настоящее время для этого служат сплавы Au-Ag-Сu, которые могут содержать добавки цинка, никеля, кобальта, палладия. Стойкость к коррозии таких сплавов определяется, в основном, содержанием в них золота, а цветовые оттенки и механические свойства - соотношением серебра и меди.

Важнейшей характеристикой ювелирных изделий является их проба, характеризующая содержание в них золота (для серебряных или платиновых изделий - соответственно серебра или платины). В нашей стране установлена метрическая система проб, в которой содержание золота обозначается числом частей по массе в 1000 частях сплава. Эта же система принята в большинстве стран. В соответствии с ней чистое золото имеет пробу 1000. До 1927 г. в России существовала золотниковая система обозначения проб, по которой содержание золота выражалось числом золотников в одном фунте сплава. По этой системе чистому золоту соответствовала проба 96. В ряде стран (США, Великобритания, Швейцария) принята каратная система, по которой чистое золото (проба 1000) соответствует 24 условным единицам - каратам. Пробность сплавов в различных системах приведена ниже.

Метрическая….. 1000 958 750 583 375

Золотниковая …. 96 92 72 56 36

Каратная…… 24 23 18 4 9

В СНГ основную массу ювелирных изделий выпускают из сплавов проб 750, 583 и 375. За рубежом широко используют 18- и 14-каратные сплавы, а также применяют 10- и 12-каратные сплавы для плакирования неблагородных металлов.

Довольно значительное количество золота идет на чеканку монет и медалей, декоративные покрытия и т. п.

Следует отметить, что хотя в общем объеме промышленного потребления, включая ювелирную промышленность и стоматологию, доля золота, расходуемого на чисто промышленные цели (электроника, техника связи, ядерная энергетика, космическая техника и т. п.) составляет всего 10-15 %, значение золота в развитии новейших отраслей техники весьма существенно и неуклонно возрастает несмотря на высокую стоимость 2 этого металла.

Подобно золоту, обладает замечательными техническими свойствами, благодаря которым его широко применяют в промышленности. отличается самой высокой среди металлов электро- и теплопроводностью, сочетающейся с низкой химической активностью пластичностью большой отражательной способностью. Весьма ценными свойствами обладают некоторые соединения серебра, В отличие от золота, основную массу которого используют в ювелирной и связанной с ней отраслях промышленности, серебро, в основном расходуют на чисто технические цели.

Важнейшей сферой потребления серебра является производство светочувствительных материалов для кино- и фотопромышленности. Расход серебра на производство кино- и фотоматериалов неуклонно возрастает, однако, несмотря на все усилия ученых, полноценных заменителей серебра для этих целей пока не найдено.

Крупной областью применения серебра является электротехника и электроника, где высокая электропроводность серебра в сочетании с химической стойкостью предопределили широкое использование его дли изготовления контактов и проводников.

Значительное количество серебра расходуется на изготовление-припоев для пайки различных металлов и сплавов. Серебряные припои дают прочные и пластичные спаи, противостоящие ударам и вибрации. Стойкость к окислению обусловила широкое применение серебряных припоев в авиационной и космической технике, а хорошая электропроводность - в электротехнике.

Высокими разрядными характеристиками обладают серебряно-цинковые и серебряно-кадмиевые аккумуляторы, применяемые в ракетной технике, подводном флоте и т. д. Миниатюрные батареи, содержащие

КАТЕГОРИИ

ПОПУЛЯРНЫЕ СТАТЬИ

© 2024 «flemi.ru» — Ультразвуковое обследование. Брюшная полость, голова, грудная клетка